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Preface

The primary purpose of this research was to investigate possible

means of improving imaging of breast cancers by transillumination using

near infrared radiation. The need for such a detection scheme was clear

considering the possible carcenogenic properties of x-ray mammography

which is the standard modality for breast cancer detection today.

Lack of experimental data related to optical parameters of breast

tissue set limits on the degree of applicability of the methods

presented. Nevertheless, the model of light propagation in the breast

employed in the study yielded results for transmittance which are in

agreement with actual breast transillumination to a remarkable degree

considering the paucity of quantitative data available.

The encouraging results obtained with time gating and spatial

filtering (described in Chapter III) of light propagating through a

dilute blood medium should be followed up by applying the same method to

breast transillumination.

In writing this thesis, I received invaluable help from a number of

people. I am deeply grateful for the cogent questioning and guidance

which my faculty advisor, Dr. Theodore Luke, provided me. I also wish,

to thank Mai James Lupo and Capt Steven Rogers for the helpful

suggestions they made in the course of the research. Thanks go also to

on For'
Mrs. Melony Marciniak for her excellent typing of the manuscript. A&I

Finally, I wish to thank my patient wife, Yonghwa, and my sons, William )end

and Matthew, for the sacrifice they made while I was engrossed in work :."

and unable to devote to them the time they so deserve. IS -L,-- [ DiiJtr!' *
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Abs tract

This investigation is a theoretical analysis of the propagation of

near infrared light through human breast tissue with a view to

improving imaging of breast cancers by transillumination. The analysis

employed multiple scattering and radiation transport theory.

Calculation showed that breast tissue is optically thick and does

not allow for imaging details of tumors which may be imbedded in the

tissue. An example calculation carried out on the method of phase

retrieval demonstrated that the error in the estimate of the Fourier

modulus is, for normal breast tissue, nearly 100 percent and that,

therefore, the phase of an object (tumor) cannot be retrieved by this

method.

jA Monte Carlo simulation employing time gating and spatial filtering

(TGSF) was presented showing that, in some cases, an improvement in

image contrast of 77 percent is theoretically possible when

transilluminating a dilute blood medium containing a blood vessel. A

calculation of total transmittance obtained by Monte Carlo simulation on

one hand and by multiple scattering and radiation transport theory on

the other, indicated an essential agreement of the results for tissue

thicknesses less than 60mm.

A method of tying the results of Monte Carlo simulation to those of

multiple scattering and radiation transport is presented. An effective

optical thickness reduced by TGSF is defined and a method is described

to determine if the reduced effective thickness allows for reasonable

images to be obtained.

-viii-
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THEORETICAL ANALYSIS OF CANCER DETECTION

IN THE HUMAN BREAST BY TRANSILLUMINATION

I. Transillumination

Introduction

Concern over the limitations and risks (6) associated with

x-radiation in the imaging and diagnosis of hunan breast cancer is

motivating researchers to seek other, safer methods of detecting breast

lesions. One such method, transillumination, is a technique of imaging

structures of human tissue by propagating light through them (See Figure

1). The technique has gone by different names depending on light sources

and methods of light detection used. The term transillumination

initially served to name a procedure which used white light as a source

and where observation of the illuminated tissue was made by the unaided

eye. In cases where white light sources are used, but detection is

performed via infrared photography, the transillumination procedure has

been called diaphanography (23:123). The term diaphanography will not,

however, be used in this paper as the more advanced transillumination

methods employ infrared illumination (by filtering white light) and

Sinfrared video camera detection, amplification, and video display

schemes. In these cases, transillumination is referred to as light

scanning or infrared light scanning (5:409). The reader will note that

the term transillumination can be used at times, in its generic sense,

to refer to any of the optical imaging techniques mentioned above.

Structures within the human breast have varying optical properties

such that, when the structures are transilluminated, variations result

in the distribution of light intensity and color in their images.

-1-



(a)

Figure 1. (a): Carcinoma imaged by transilluiiination (23:127).
(b): Same carcinoma imaged by x-ray mammography (23:127).
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Researchers have found that breast cancers may be identified by the

shadows they cast, and benign lesions by the areas of increased

brightness they create in the image (39:14). However, the

transillumination technique has, to date, demonstrated only sufficient

effectiveness to perform as an augmentation to traditional manmography

and has not reached a level of development whereby it could be

considered as an alternative to mammography as the primary imaging tool

in the diagnosis of breast cancer.

The following section of Chapter I is a review of the current

literature relevant to transillumination as an aid in the diagnosis of

diseased breast tissue. The references cited were collected by means of

a computerized literature search using the medical library of DIALOG

software. The reader will find that, save for the article by Watmough

(which is the last presented here), the review is organized

chronologically, showing the improvements made, and as a consequence,

the problems which have confronted and continue to define the limits of

the applicability of transillumination.

Background

The first diagnostic use of transillumination of the breast was made

by Culter in 1929 (9). He employed visible wavelengths of white light

and reported some success in identifying tissue variations. However, it

was recognized early on that "it was not possible to differentiate

shadows of benign from malignant lesions, and that light diffusion from

the available probe often prevented smaller lesions from being seen"

(23:123).

Lafreniere, et al. reported that, in spite of initial support for

the new transillumination technique, the procedure fell into disrepute,

probably due to inadequacy of the available equipment (23:123). Over

-3-



the years a number of improvements were made to both the equipment and

technique. Among these improvements were (1) illumination with longer

wavelength, narrower spectrum sources which increased tissue

penetration and reduced scattering, (2) the introduction of infrared

photography, and (3) the use of fiber optic bundles to create a cold

light source to convey the light energy to the tissue (this overcame an

early problem with heat generated by the light source). Despite these

improvements, reports indicated the technique was cumbersome and did not

add significantly to the conventional physical examination and mammogram

(18).

Better results were obtained by Morton (25) who, in 1981, reported

using a red and infrared light source to illuminate the tissue. In

addition, he introduced an infrared video camera and displayed its

images on a black and white video monitor. This allowed for

amplification of the image and thereby reduced the intensity requirement

of the source. As a result of Morton's improvements, internal

structures which had previously been unrecognizable to the unaided eye

could be viewed and identified on the video monitor (26).

Morton's technique had been based on Cartwright's (7) observation

made in 1930 that greater transmission through human tissue was possible

with infrared illumination. The work of Anderson and Parrish (2:17)

supports Cartwright's findings showing that transmittance of light

through human skin is decreased in the shorter wavelength spectrum and

increases in the near infrared.

In 1983, Bartrum and Crow (5:409) reported that transillumination

light scanning can yield clinical results comparable to mamnography if

Athe personnel who are interpreting light scan images are trained and

have some knowledge of other clinical data related to the patient. When

-4-
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the light scan interpreter is blind to other relevant clinical data, a

diagnosis based on the light scan is generally poorer than that obtained

from mamnography. In their report, Bartrum and Crow cite conditions

they feel must be met to obtain optimal results from light scanning.

First, diffuse incident light is required since breast tissue is a

highly scattering medium. When focused light is used the light scan

becomes more difficult to interpret. Second, the optical absorption

differences between cancerous and adjacent tissue can be blurred if the

transilluminating light is too intense. Third, vigorous physical

compression of the breast is necessary since the farther a lesion is

located from the skin surface, the weaker is the shadow cast by the

lesion. Bartrum and Crow found that the "shadow from a 1-cm-diameter

lesion (in a breast phantom) begins to fade rapidly when the lesion is

more than 15nn from the skin surface; at 25imm, the shadow is obscured"

(5:413). For this reason a breast lesion may be invisible if "it is not

compressed to within 2cm of a skin surface" (5:413). Fourth, because a

lesion may become undetectable a short distance beneath the tissue

surface, light scanning from multiple angles is required to ensure

maximum possible coverage of the tissue. Fifth, and lastly, since

carcinomas absorb light differentially in narrow spectra, a narrow

spectrum of illuminating light should be used as a source (this could be

accomplished by filtering a white light source). Bartrum and Crow go on

to say ". . we performed in vivo spectral analysis of 11 carcinomas.

which showed preferential tumor absorption in two relatively narrow

wavelenght bands, one in the far visible red spectrum and another in the

infrared spectrum" (5:413). In 1986, Lafreniere et al. (23) reported

the results of a clinical evaluation of transillumination and infrared

light scanning as compared with conventional physical examination and

-5-



mammography. The test involved 600 patients with 79 biopsies performed

revealing 26 carcinomas (23:124). These researchers reported that

examination, conventional mammography; simple transillumination,
I.L.S. (infrared light scanning), and simple transillumination
combined with I.L.S. respectively showed a true positive
interpretation in 21, 22, 19, 25, and 25 of 26 breast lesions
histologically positive for malignancy (sensitivity 81%, 85%, 73%,
96%, 96%) (19:124).

These results indicate that infrared light scanning missed only one

of 26 carcinomas verified histologically. In this case, the

interpreters of the images of mammography, transillumination, or

infrared light scanning techniques were trained in each technique but

had no knowledge of other clinical data relating to the patients.

An explanation of the physical mechanism responsible for the

appearance of the images produced by transillumination and infrared

light scanning was given by Watmough in 1982 (39:14). Watmough had set

&out to measure the transmission coefficient of sections of tissue

removed from the female breast during surgical operation. He had

expected to find that "different lesions would transmit light to the

extent dependent on the type of disease process" (39:11). Instead, he

found that despite large variations (size and shape) in tissue samples

taken, there was no clear distinction between transmission

characteristics of malignant tumors and benign lesions. Watmough argued

that since the variations in light transmission were not caused by the

diseased tissues themselves, transillumination and light scanning

were simply not imaging the diseased tissues. He reports, ". . .the

spectro-photometric traces in every case demonstrated the absorption

bands of oxyhaemoglobin [oxygenated hemoglobin] . . ." (39:11). From

these findings, Watmough postulated that the transillumination procedure

actually measured the number density of red cells in the illuminated

tissue. To determine the accuracy of his hypothesis, Watmough

0. -6-



transilluminated (with a xenon flash tube) samples of whole blood at

varying degrees of dilution and exposed infrared color film to the light

scan images of the breast. A spectral analysis of samples of diluted

blood was then carried out; the results showing that the samples ceased

to transmit light at frequencies (colors) related to the color of whole

blood in a sample. For samples with higher blood densities the

frequency cut-offs occurred in the longer wavelength regions (red and

orange). The more diluted samples showed frequency cut-offs toward the

blue end of the spectrum. Watmough writes, ". . .These experiments

provide excellent confirmation of how red cell densities in effect

provide a range of colour filters. . . ."(39:13).

Breast Anatomy

The Normal Breast.

The description given here of the anatomy and histology of the human

breast is taken from Egan (12:17-24). The structure of the normal

breast will be presented first to be followed by the formulation of an

optical model of the breast.

The breast is located between the superficial and deep layers of the

superficial fascia (see Figure 2). The superficial layer of fascia,

seperated from the skin by 0.5 to 2.5 cm of subcutaneous fat and areolar

tissue (the areola is the region of darker skin surrounding the nipple),

forms an irregular boundary for the surface of the glandular tissue.

Projections of collagenous fiberous tissue extend from the fascia and

surround lobules of fat. These masses of collagen fibers (low in water

content) form suspensory ligaments called Cooper's ligaments (12:17).

Younger women tend to have breast tissue which is primarily fibrous with

comparatively small amounts of fat (28). This fact is of particular

importance since transillumination is targeted at younger persons below

-7-
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Figure 2. The Normal Breast (12:18). An artist's conception of the
various anatomic structures of the breast.
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the age of 50 (see Table I). This means that, for the purposes of

transillumination, the breast may be considered primarily fibrous. When

fat lobules occur they do so with dimensions on the order of

centimeters (8:43-48).

Within the breast are fifteen to twenty irregular lobes, converging

to the nipple. Each lobe is drained by its own lactiferous duct, and is

provided with an excretory duct, 2 to 4.5 mm in diameter (12:17). These

lobes are macroscopic in size and are, therefore, many times larger than

the collagen fibers which have dimensions on the order of a hundred

nanometers.

The anatomic structures of the breast are, for purposes of

classification, divided between functional structures called the

parenchyma, and supporting structures called the stroma (see Figure 3).

AOL& Because the parenchyma (such as the lactiferous ducts and lobes) tend to

be very large compared to wavelength of radiation in transillumination,

they cannot be considered to contribute greatly to light scattering-

also, in the non-lactating breast they are of low water content and,

therefore, are not highly absorbing. For these reasons, the description

given here of the macroscopic structure of the breast concentrates on

the fibrous tissue of the stroma. The stroma consists of dense,

collagenous, intralobular connective tissue (see Figure 3), containing

the large blood vessels, nerves, lymphatics and varying amounts of

adipose tissue. This connective tissue produces the poorly defined

septa between the lobules and lobes of the mammary gland (12:19).

In the craniocaudad view (see Figure 4) the dense inner triangle of

tissue produces the varying degrees of diffuse opasity to x-rays.

Contrast (in x-ray mammography) in the image is dependent upon the

relative density of fatty and fibrous tissues. A reticular appearance

-9-



TABLE I

BREAST TYPES

Classification of breast types showing percent fibrous and fatty
tissues for various age groups.

FIBROUS FATIY

Age Group Number Percent Number Percent Total

21-25 13 100 - - 13

26-30 11 91.6 1 8.4 12

31-35 39 88.7 5 11.3 44

36-40 27 81.8 6 11.2 33

41-45 34 75.5 11 24.5 45

46-50 38 65.5 20 34.5 58

1651-55 54 55.1 44 44.9 98

56-60 35 37.2 59 62.8 94

61-65 55 39.8 83 60.2 138

66-70 41 35.9 73 64.1 114

71-75 51 52.2 46 47.4 97

76-80 24 64.8 13 35.2 37

81-85 8 66.6 4 33.4 12

86-90 4 80.0 1 20.0 5

21-90 434 54.3 366 45.8 800

(28)
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Figure 3. Microscopic (Histologic) Structure of the Breast (12:19).
The microscopic appearance of the essential histologic elements of the
mammary gland. For reference, the lactiferous duct in the center of the
drawing is around 2 to 4.5 rrn in cross sectional size.
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m47

Figure 4. Normal Cranioc-audad View of the Breast (12:24). A
thirty-one year old white female with mnammogram done for routine
check-up.
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caused by the stroma or connective tissue framework is evident in x-ray

images; the connective tissue may be nearly homogeneous in the very

dense breast (12:22). Again, in transillumination, the fatty lobules

are not considered either highly scattering or absorbing (31).

To the extent that the breast is a light absorbing optical

medium, the absorption experienced is due, on a comparative basis,

almost entirely to the freely flowing plasma in veins and arteries.

Accurate values for the volumetric content of blood in the breast were

not available for this writing. The subject of the scattering and

absorption characteristics of whole blood (blood cells and plasma) will

be covered in greater detail in the theoretical model of breast to be

described below.

An Optical Model for the Human Breast.

Theoretical models of the breast where scattering is of relative

unimportance often consider the breast to be a medium made up of water

and fat (27). This approximation seems suited to irradiation of the

breast with x-rays where absorption plays the primary role in

attenuation. However, in the red and near infrared region of the

spectrum where transillumination occurs, both absorption arid scattering

play a role in determining transmission properties of the breast.

Absorption Properties of the Breast.

By far, the greatest amount of absorption in biological media is

found to occur in blood-borne pigments and blood plasma (2:17). In

tissues of low blood or water content relatively little absorption is

noted (21:695). Specific optical data on the breast which would allow

one to isolate transmission losses due to scattering from those due to

absorption are lacking. The optical characteristics of the dermis of

the skin are, however, in this research considered to have an especially

4 -13-
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close affinity to the optical properties of the breast as the dermis has

a high content of collagenous fibers (these fibers account for 70

percent of the dry weight of the dermis) (3:256). Anderson and Parrish

state (2:17) with regard to Findlay's (16) optical measurements of pig

dermis, "Summing Findlay's transmittance and remittance spectra gives

values close to 1.0 (100 percent) across the entire visible spectrum,

indicating that very little visible light was actually absorbed."

Figure 5 shows spectral transmittance and remittance data (analagous to

those of Findlay) for a 200 m thick section of human dermis

in vitro. Figure 6 presents calculated values of the scattering

coefficient S and the absorption coefficient K for human dermis in vitro.

The coefficients S and K are calculated from the Kubelka-Munk theory of

radiation transfer (22:106-116) and should not be confused with the

scattering cross section s or the absorption cross section 07
US a

which will be used in Chapter II in the development of the analytic and

transport theories of scattering. The Kubelka-Munk theory is not

employed in this research as it does not lend itself readily to

interpretations relating to actual physical parameters of individual

particles. This should not be construed, however, to imply that the

Kubelka-Munk theory does not give valid quantitative results (22:106).

The data in Figure 6 indicate that absorption is indeed low over

the visible spectrum and also in the near infrared region except at the

prominent absorption bands of water. Figure 5 shows peak transmission

occurs at about 1.23/m where, again, there is little absorption.

From the data presented, it is apparent that in the red and near

infrared portion of the spectrum, a medium with a high percentage of

collagenous fibers can be approximated as one having a low value of

absorptance. Moreover, due to the fact that fatty tissues are low in

-14-
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Figure 5 (2:17). Spectral Transmittance and Remittance of a 200 m
Thick Section of Human Dermis. Data is given in percent remittance (R)
or transmittance (T).
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Figure 6. (2:17). Diffuse Scattering (S) and Absorption (K)
Coefficients for Human Dermis. Data is calculated from the Kubelka-Munk
theory of radiation transfer.
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water content (21:695), one may conclude that these tissues, too,

evidence relatively low absorption. It is not possible to determine the

absolute absorptance of the fatty tissues at near )pm wavelengths (data

in the literature seems to be concentrated in the microwave or

ultraviolet region of the spectrum). Calculations to be done in Chapter

III will show that total theoretical transmission based on a model

assuming low absorptance is not at great variance with transmission data

collected under actual transillumination. Consequently, the model of

breast tissue adopted in this research considers breast tissues to

exhibit low absorption of near infrared radiation except in areas where

blood plasma is present.

Light Scattering Properties of the Breast.

In this section, the scattering properties of fatty tissues,

collagen fibers, and whole blood are described.

However, before considering particular tissue types, it is

convenient to describe some qualitative aspects of scattering, in

* general.

First, if the size of a particle is much smaller than a wavelength,

the scattering cross section O (a measure of the strength of

dscattering) is inversely proportional to the fourth power of the

_ wavelength and directly proportional to the square of the volume of the

particle (19:13) (see Appendix A for a definition ofO). This type of
s

scattering is called Rayleigh scattering. It is generally isotropic

(equal in all directions) in its radiation pattern and comparatively
weak due to the dependence. As particle size increases and

becomes comparable to a wavelength, the scattering is much stronger

than in Rayleigh scattering and is forward directed (or in a dipole

pattern). When particle size greatly exceeds the wavelength, the
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scattering cross section is proportional to X-2 and is stronger than

Rayleigh scattering but weaker than scattering from particles close to a

wavelength in size. In this case, the scattering is more forward

directed. This third classification of scattering will be referred to

as large particle scattering.

Parrish, in discussing the types of scattering (as described above)

which occur in skin stated, ". . .all these general types of scattering

occur, but quantitatively, scattering by structure with dimensions on

the order of optical wavelengths or somewhat larger must dominate over

Rayleigh scattering." (2:14).

For wavelengths around 1.j, Rayleigh scattering is not likely to

occur in fatty tissues which are comparitively homogeneous on a scale of

micrometers. This scattering would be due to fat molecules and be

proportional to X-4 and to V2 where V is the volume of a molecule.

This scattering should, therefore, be weak. Further, since breast

tissue in younger persons tends to be more fibrous than fatty in nature,

the contribution to scattering on the part of fatty tissues can be

considered small in transillumination applications.

The situation is quite different, however, when the scattering

properties of collagen fibers are considered. With regard to the

transmission properties of these fibers in the dermis, Parrish writes:

'"The data indicates that the Beer-Lambert relation is invalid for
dermis, and that transmittance is both higher and more forward
directed for longer wavelengths over the region between 0.5 and
1.23pm. These observations suggest that scattering is of major
importance in the dermis." (2:17)

In discussing Findlay's study of pig dermis, it was pointed out that

collagenous material exhibited little absorption over the entire visible

spectrum. Thus, from the above remarks, it may be concluded first of

all, that collagen fibers represent a primarily scattering medium rather
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than an absorptive one. It should be noted that, on a particle scale,

collagen fibers exhibit an identity of structure not only throughout the

body of an individual but across species as well (see Figures 7 and 8).

Thus, it is considered here that scattering by collagen in the breast

is, to a very good approximation, comparable to that found in dermal

collagen.

So far, a discussion of the optical properties of fibrous breast

tissue has led to the conclusion that this material is highly scattering

and contibutes very little to absorption. It remains to both quantify

this conclusion (in so far as it is possible to do so given the

comparative lack of data in this area) and to characterize the angular

distribution of radiation scattered by collagen fibers. The problem of

radiation distribution will be considered first to be followed by a

discussion of the approximate dimensions of the scatterers.

It is possible, based on the data presented in Figure 9, to place

some bounds on the distribution of scattered radiation from collagen

fibers. The data in Figure 9 graph A for the thin sample of dermis of

thickness 0. 4 p.f shows that for longer wavelengths the scattering

pattern of the tissue as a whole is concentrated in the forward

direction. Compared to the thick sample of dermis, the thin sample

0reflects much more clearly the scattering properties of individual

microscopic scattering centers. This is due to the fact that the light

propagating through the thick sample is multiply scattered many times

over effectively masking or averaging out the contributions of

individual scatterers. The data previously presented in Figure 5 giving

percent remittance (R) and transmittance (T) for a 20L.n thick section

of dermis is reproduced in Figure 9 as grapah B. Graph B of Figure 9

gives absolute values of remittance and transmittance while graph A
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Figure 7. Rat tail tendon collagen fibril (39:16).
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(37:53e 8. Collagen teased from a sample of humnan skin x 33,000
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Figure 9. Graph A: Scattering Angle Dependence orn Wavelength(17:259). Upper curves correspond to thin sample; lower curves tothick sample. Graph B: Spectral transmittance and remittance of a20 thick section of human dermis. Data is given in percent
rentfttance (R) or transmittance (T).
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represents percentage of total output scattered in a direction at the

output plane. Of course, the data in graphs A and B of Figure 9 must be

consistent with one another and an adequate theory of scattering in the

breast must account for both sets of data.

An assumption that the microscopic scattering patterns of individual

scattering centers are forward directed can be shown to be consistent

with all the data presented in Figure 9. First, it is important to note

that this data was collected from a gross sample of 20Pm in thickness.

The transmittance and remittance values, therefore, are the result of

scattering contributions from a great many scattering centers. The fact

that there are many scattering centers (consistent with the intense

scattering known to characterize meshes of collagen fibers) implies that

virtually all the photons are scattered during propagation through the

tissue. Further, graph B of Figure 9 shows that at approximately 1.2 Im

where transmission is greatest, the ratio of transmitted to remitted

light is about four to one. Therefore, the most likely explantion for

the narrow output scattering pattern of the thin sample for longer

wavelengths is that the individual scattering centers in the tissue

scatter light in a primarily forward direction. In accordance with the

general principles regarding size of particles, wavelength, and

scattering outlined on pages 17 and 18, this forward directed scattering

implies that the scattering centers are, on the average, larger than a

wavelength of about Ph. The work of Hardy, et al. (17) supports this

conclusion:

For thicknesses as great as Imm scattering is maximal at all
wavelengths although for the thinner specimens there is a wavelength
dependence of scattering. This dependence, although varying
inversely with wavelength, is far different from the Rayleigh
scattering. This is to be expected as the 'particle size' of the
scattering elements of the skin specimen is probably not less than
that of a wavelength of light in the spectral range studied in
these experiments (17:258).
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At first glance, however, this conclusion regarding the scattered

radiation patterns seems to be at variance with the fact that collagen

fibers, though they may be a few micrometers in length, have an average

diameter of approximately lOOnm. This fact makes each fiber, in one

dimension, at least 10 times smaller than a :,Lm wavelength. Since the

fibers are much smaller than a wavelength, one would expect the

scattered radiation to be distributed almost equally in space at least

about the axis of the fiber. To conclude that the scattered radiation

is isotropic in the axial direction, would, however, be incorrect as

the following will show.

Collagen fibers derive their collective strength as supportive

structures from their high number density in a unit volume. Some idea

of their density and arrangement may be gleaned from Figure 8 which

shows a number of these fibers taken from a human specimen. As

Uparticles are packed closer together, the scattering properties they

exhibit individually, or in small numbers, change dramatically

(33:913-914). For dense particles, the scattering, in fact, decreases

since, the denser the particles get, the more they begin to resemble a

homogeneous medium. Under these circumstances, the product of the

number density particles of Pn and the scattering cross section Gs

becomes 0s = w(l - w)Gs/Ve. Here, w is the fraction of the

total volume of the gross medium which all the scattering particles take

up and Ve is the volume of a single particle. The factor w(l - w) is

parabolic with a maximum value at w = 0.5. This means thatPnG- has

the same value at w = 0.95 that it has a 0.05. However, the identity of

the scatterers themselves may change from that of the particles at

w - 0.05 to the interstitial gaps between particles at w = 0.95.

Considering Figure 8 and drawing upon the arguments above, one is
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led to conclude that in a dense mesh of collagen fibers, the actual

scattering centers are probably more accurately identified with the gaps

between fibers or bundles of fibers with dimensions comparable to or

perhaps larger than an optical wavelength. This estimate in size of the

scattering centers should, in all liklihood, be revised upward to obtain

a large particle approximation to scattering consistent with the

transmittance and remittance data in Figure 5. Considering, again, the

data in Figure 9, it may be felt that the angular spread of radiation

for shorter wavelengths (such as 0.559&) is inconsistent with large

particle scattering since these short wavelengths are smaller than the

dimensions of gaps between fibers. A possible explanation for the

phenomenon may be that the shorter wavelengths are exciting a different

scattering species (perhaps the fibers themselves).

To close this section, a final comment regarding optimal

ce transmittance through dermal tissue is called for. The reader will

recall from Figure 5 that transmittance is greatest at a wavelength of

about 1.24j. This suggests that, if internal fibrous tissue of the

breast is similar to dermal collagen in structure, then a relatively

good value of transmittance may be obtained in breast transillumination

at 1.2p4. At this wavelength absorption in the fibrous tissue is low

(about 20 percent) and, therefore, light contrast due to differential

absorption between cancers and surrounding tissues should be

comparitively good. The suggestion to detect light of 1.2p

6 is made in view of the fact that detection in transillumination is now

performed using silicon detectors whose responses extend to about 1.IbM

but no further. Therefore, the transmission data so far collected in

transillumination does not include transmittances for wavelengths

beyond i.1.
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Although transmittance maxima also occur at 1.7 and 2.2.p,

wavelengths in these regions suffer greater absorption and it can be

expected that contrast in transillumination at these wavelengths would

decrease somewhat from that at 1.2-.i.

Light Scattering in Whole Blood.

Whole blood consists of red blood cells and blood plasma. In normal

blood tissue, the red blood cells account for approximately 40 percent

of the total blood volume. Thus, 60 percent of blood is plasma which is

almost entirely made up of water.

Considered in isolation, red blood cells which are about P in

diameter and 2p in thickness, are highly scattering in a forward

direction at near infrared wavelengths (19:63,66). However, because the

cells are surrounded by plasma, radiation spanning the red and near

infrared is absorbed in the plasma either before it reaches the cells or

after scattering from them. This accounts for the shadows cast in

transillumination by superficial blood vessels and by the mass of

proliferated blood vessels which surround the highest percentage of

tumors in the breast. Consequently, whole blood in breast tissue is

considered primarily an absorptive medium vice a scattering one in

transillumination.

Taking together, then, the data and arguments presented above, one

may obtain a reasonable model of light interaction with breast tissues

at red and near infrared wavelengths. The features of this model would

include

(1) Low absorption in tissues surrounding blood vessels and

cancers,

(2) High absorption in blood and blood vessels massed about

cancers,
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(3) Low scattering in fatty and whole blood tissues, and

(4) Intense highly forward directed scattering in the intralobular

connective tissue made up of collagen fibers.

This model will be assumed in Chapter II in the development of the

mathematical theory of multiple scattering as it applies to

transillumination. There the reader will find the propagation of near

infrared wavelengths through tissues surrounding breast tumors to be

described by mathematical functions which provide for forward directed

scattering, relatively large scattering cross section OsQ and low

absorption.
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II. Scattering Theory

As will become clear in the discussion to follow, a central goal of

the mathematical development of scattering theory as it applies to

breast transillumination must be to calculate the correlation function

(or mutual coherence function) for a scattering medium. The correlation

function is an important quantity in the calculation of both the point

spread function and the limitation of resolution of an imaging system

in the presence of a random medium. It will become clear that the

correlation function is the key to a quantitative determination of the

quality of imaging that can be expected. From a knowledge of the point

• spread function, one can estimate the efficacy of the techniques of

image processing such as phase retrieval which employ extrapolation

from the Fourier modulus.

The mathematical development to follow proceeds along two differing

lines of thought corresponding to the analytic and transport theories of

scattering in a random medium. The analytic theory (also called

multiple scattering theory) begins with Maxwell's equations or the wave

equation and develops differential or integral equations for statistical

quantities of interest. The transport theory, on the other hand, is

[O not based on an electromagnetic wave approach but deals directly with

the movement of energy through a medium containing scattering and

absorbing particles. Since the transport theory does not develop from

electromagnetic wave propagation, it does not directly include

diffraction and interference effects--these effects enter indirectly

through the scattering cross section (9 ) and the absorption cross
s

section (7) (0s anda being measurable quantities) (19:147).

Although the analytic and transport theories of scattering take
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quite different points of view, it can be shown that the two theories

are connected. Specifically, the correlation function of analytic

theory and the specific intensity of transport theory are a Fourier

transform pair (20:275). Thus, although the transport theory does

not contain information as to fields, it is possible to calculate

the correlation of fields via a Fourier transform. This concept will

be exploited when the correlation function for a slab of tissue will

be derived based on a knowledge of the specific intensity.

Twersky's multiple scattering theory is developed in Appendix A

where the integral equation for the correlation function is

obtained. This theory was chosen as it has been successfully

applied by investigators to scattering problems in biological

media (30). Twersky's correlation function is defined and its relation

to the specific intensity of transport theory through a Fourier

transform is shown.

A solution of the transport equation as tailored to the case of the

plane-parallel slab of tissue is obtained. The slab configuration was

chosen as it corresponds well to the clinical set-up for

transillumination of the breast where the breast is itself compressed

into the form of a plane-parallel medium (precisely as is done in X-ray

mammography).

This chapter presents four topics: (1) the correlation function for

analytic theory, (2) the connection between the analytic and transport

theories, (3) the limitation on image resolution due to a scattering

medium, and (4) the signal to noise ratio relevant to transillumination.

It will be shown that according to scattering theory embodied in the

four topics above, the image obtained via transillumination cannot be

improved without first reducing the scattering by some physical means
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before image processing is applied. This conclusion will lead in

Chapter III to a consideration of time gating and spatial filtering- a

method of imaging which attempts to reduce the effective scattering

(and thus reduce noise) by temporal and spatial discrimination of photon

paths.

The Correlation Function From Analytic Theory

The correlation function J-(ra, rb) of analytic theory for the

scattered field at points ra and rb is presented here as it will be used

later to calculate the limit of resolution one can expect to obtain when

imaging through a random medium. This limitation of resolution is

important to the transillumination problem as it will define the

theoretical limits of the efficacy of transillumination and will provide

quantitative methods for determining these limits.

Twersky's integral equation for the correlation of the fielda at a

point raand4 b at a point rb in a random medium is (35:99)

where

a + V t (2)

a advb

Vsand vs are called multiple scattering operators. Their function

* is to convert a wave incident on a scatterer at a location r into a~s

scattered wave which is then subsequently observed at location ra (in

the case of a) or r (in the case of v b). The function /(rs)

represents the number density of scatterers per unit volume as a

function of position. In equation (2) the symbol u a represents the
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scattering of a wave incident on a scatterer at location rs and

propagating through free space to a point ra. Thus, usai called the
a b

free space scattering operator. The form of the operators, vs , vs b

and usa are derived in detail in Appendix B. The brackets < > in

equation (1) indicate the usual time average value and equation (1) is

integrated over all scatterers in the mediun. In order to complete the

calculation of the correlation function given by equation (1), it would

be necessary to find expressions for the quantity 4P><V* > and

<IV 12> using the analytic theory. But complete solutions for the

Twersky integral equation for the correlation function have not appeared

in the literature. However, as adumbrated at the beginning of this

* chapter, a methodology does exist for the complete calculation of the

correlation function based on the fact that the correlation function of

analytic theory and the specific intensity of the transport theory are a

Fourier transform pair. It remains now to justify the assertion that

this Fourier transform connection exists between the analytic and

transport theories. Once this connection is established, it will be

possible to depart from the analytic theory and calculate the

correlation of fields from the specific intensity. The reader will

'find a description of the transport theory and specific intensity in

* Appendix C.

The Connection Between the Analytic and Transport Theories

Although solutions for Twersky's correlation function based on

analytic theory have not yet appeared, various solutions for the

specific intensity in radiation transport theory do exist. The reader

is referred to Appendix C for a description and discussion of transport

theory. In this section, the connection between the correlation

function and specific intensity is described. With this knowledge in
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hand, it will be possible to obtain information regarding correlation

of fields despite the fact that radiation transport theory is not based

on electromagnetic field equations. In later developments, it will be

seen that the correlation function enters as an essential quantity in

the calculation of the limit of resolution of an imaging system. Thus,

the transport theory becomes a powerful tool in the analysis of imaging

of the breast by transillumination. The specific intensity I(r,s) is

measured in Wm-2 sr- Hz-I and is the average power flux density within a

unit frequency band centered at frequency and radiating in the

direction s from a point r on a radiating surface. See Figure 10.

lI(r,s)

da

Figure 10. Flux through da on a surface A (19:150).

The correlation function presented in equation (1) and the specific

intensity are related by (20:275)

where r = 1/2(ra + rb) and rd =(ra - rb), and Kr is the real part of

the complex wave number for a scattering medium (see Appendix B for a

description of K).

, It can be shown that, assuming the validity of equation (3), the

integral equation for the average intensity in transport theory can be

derived (see Appendix D). Since this is the case, it follows that the
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correlation function of analytic theory and the specific intensity of

transport theory are a Fourier transform pair precisely as stated in

equation (3).

Limitation on Image Resolution Due to a Scattering Medium

The reader will recall from Chapter I that, for the purposes of

transillumination, the breast is compressed into a plane-parallel

optical medium. In this section, the limit of resolution of an imaging

system in the presence of a plane-parallel scattering medium is

considered. The reason for calculating such a resolution limit is that

it provides a measure for assessing the efficacy of imaging via

transillumination. How this is the case will become clear as the

discussion proceeds. Using the Fourier transform relation between the

correlation function and the specific intensity, the correlation

function for a plane wave (in the large particle scattering

0 approximation) incident upon a scattering medium is presented. Figure

11 depicts the physical set up for the calculation of the limit of

resolution.

<0 C1.

Figure 11. A monochromatic plane wavel, propagating through a
random distribution of scatterers (20:301). 1The resultant scattered
wave is focused ciito the x,y plane (Fourier transform plane). The lens
has radius a and focal length f.

The assumption, based on the optical model presented in Chapter I,
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that scattering is due primarily to particles larger than a wavelength

in the near infrared implies that the scattering pattern of an

individual particle is forward directed. A mathematical formulation

of a forward scattering pattern may be obtained by means of a phase

function p(s) which describes the amount of power which is scattered

into a direction s by a scatterer. A forward-directed scattering

pattern may be approximated by giving p(s) a Gaussian form:

F'5  49ARW e P(aS) (4)

where, for large scatterers Y P= 2. 44 (.D/4 )  where D is the

particle diameter and X is the wavelength of incident radiation. W0 is

called the albedo of the scatterer and is defined as4

Sc/(U, c+ ) a (5)

where 7 is the scattering cross section of a particle, 0- is the

absorption cross section, and U (total cross section) is equal tot

0- +07-
s a

In appendices E and F, it is shown that the correlation function

l(z,q) for a plane-parallel medium with plane wave incidence is

P( ):IOexp P 0 [ 1 - W. exp (- q2/4ap)} (6)

wherePn is the number density of scatterers per unit volume. The

quantity q = Kr ' where Kr is, again, the real part of the complex wave

number for a scattering medium and ' = ' -P 2 ' where ' and '

are points in the x', y' plane as picture in Figure 11. Thus, I(z,q)

represents the correlation of fields originating at points[)' andP 2 1
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as measured a distance z in the horizontal direction in Figure 11.

®r The intensity in the focal plane of the lens pictured in Figure 11

is equal to the point spread function PfP) for the system depicted

since, in this case, the image is that of a point source at infinity.

In physical terms, the point spread function describes the effect the

scatterers have on the resultant image. Heuristically, the point

spread function states that the point source is "spread out" in the

focal plane. The reader will note the conspicuous absence of a cancer

in the medium in Figure 11. The reason for this is that the goal of

calculating the resolution limit is to gain an understanding of the

effect of the scatterers on a propagating wave. The image that results

from imaging an opaque object (in this case a cancer surrounded by blood

vessels) through a non-scattering medium is well understood. Thus,

it is only necessary to image the scatterers alone to obtain the

required understanding of the effect of scattering on cancer detection

by transillumination.

The point spread function Pf(P) or intensity in the focal plane of

Figure 11 can be shown to be (see Appendix G)

2a

0

where k = 27V, f = focal length of a lens, a = radius of lens, KP'd)

is the pupil function, andPd' =10 -2 t " The quantityp is a point x,y

at a distance (x2 + y2 )1/2 from the horizontal axis (see Figure 11).

In Appendix G it is shown that for an optically thick medium, the

point spread function PfQ) may be expressed as the sum of a coherent

(average) part and an incoherent (fluctuating) part:
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where PW) is the coherent portion of Pf4) and PiV) is the incoherent

portion. Also shown in Appendix G are expression for PcP) and Pip):

R (P) Iexp(-T) (C/P) JZ(ipa/f)9)

and

pp)= Io(a/p,)zexp [-T( - Wo) - (P/Pi)] (10)

whereT-optical thickness =/3I((Y+Ojj Again,P n is the number

density of scatterers per unit volume, s and Ua are the scattering and
s a

absorption cross sections, and

rC P

The quantity z in the expression for Tis, for the transillumination

problem, the physical thickness of a breast compressed for

transillumination. The relationship between PcO ) and Pip) is

shown in Figure 12 where Pip) is superimposed over Pcp).
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p=0
(Distance across the focal plane).

Figure 12. P9) is the Airy pattern created by the imaging of the
coherently propagating portion of the intensity (20:305). The incoherent
intensity P.(P) is spread out over the focal plane and increases with
increasing 6ptical thickness T.

The coherent intensity is the image bearing component of the total

intensity. If Pip) is less than ech)) around the pointp= 0, it is

possible to obtain an image of an object surrounded by a scattering

medium. However, if P ip) is greater than Pcp), the image is "washed

out" by the incoherent intensity (20:305). Note, however, that even in

cases where PipO) < Pc O), if PiO) is significant, the contrast in

the image may be quite poor. Under these circumstances some resolution

may be possible but the image will still be difficult to see.

The Signal to Noise Ratio

0 Based on the development in the previous section it is possible to

define a signal to noise ratio in terms of the coherent intensity Pcp)

and the incoherent intensity Pip). It should be understood at the

outset that the noise (which will be defined as the incoherent

intensity) is not additive. In fact, the incoherent noise is created

directly from the coherently propagating intensity as it is scattered by

the medium. Thus, as the incoherent intensity grows, the coherent

intensity diminishes.
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The signal to noise ratio will be defined as the ratio of the

coherent to incoherent intensities:

=Signal to noise rc N (12S

To simplify the calculation, consider the signal to noise ratio at the

point/O 0:k

_1 Iexp(-T)(a/P) J 2 ( r
P0  0(a/Pi)ZeXp[T,(1_WO)( P/P P=] P=O

J 1-)(13)
P-0O (i/p1)zep(TrW)exp(P/PD 2

Expanding the numnerator using the formula

=~~~~/ x/ r- xXz4+X~Z4

(j,/p%)Z (T*4) (14)

and then recalling that

p2  K (rf/ )(T Wo/ap) (1

-38-



the signal to noise ratio becomes

(Krazz(T-Wo/r# )exp (-TrW) (15)

Pao

It can readily be seen that the signal to noise ratio is strongly a

function of T Pn(O-- +O-a )Z as SIN falls exponentially with

increasing optical thickness.

As an example of a calculation of S/N in a biological medium, the

signal to noise ratio for a dilute blood medium will be obtained. The

physical parameters employed are the same as those used by

Maarek et al. (24) in a Monte Carlo simulation of photon propagation in

a tissue medium (see the section entitled "Time Gating the Output" in

Chapter V). This allows comparison of calculation techniques.

Before the calculation is attempted, however, a brief digression to

discuss the relationship of the scattering cross section to particle

density is required. As the number density of scatterers increases, the

particles are packed closely together. As the ratio of total volume of

scatterers to total volume of medium approaches 1, the particles are

packed together in such a manner as to create a homogeneous medium of

particles in which no scattering occurs. Thus, based on the argument

above, one is led to the following approximation for the factor/)nG:

pa-- )7 / (16)

where w is the ratio of the total volume of particles to the total

volume of the medium and Ve is the volume of a single particle.

Equation (16) was obtained by Twersky via a more mathematically

rigorous approach (33:913). Incidentally, these considerations throw
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some light on why transillumination can, in some instances, give better

results for dense tissues than can x-ray mammography.

As in the study done by Maarek et al. (24) the following calculation

assumes a hematocrit H (the ratio of blood cell content to whole blood

where whole blood consists of blood cells and plasma) of 0.05. Thus, in

this case, the quantity H = w. In addition to H, the equations listed

below were substituted into equation (15) to calculate the signal to

noise ratio:

Kr= R+ H/(1 H) 1k[ /n- I],

pe Z.E, (D/X) z

and

"V =wrzh

where r is the radius of a blood cell and h is its thickness. The

equation for the real part of K (K r ) is taken from Twersky (32:168)

and the ratio n1/n0 is the ratio of the index of refraction of a blood

cell to that of water. As will be seen, the accuracy of the second

term used in Kr are not critical as the signal to noise ratio is so

strongly dependent on 7T.

!i -:7-::The numerical values chosen were
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H = 0.05

U = 0.18 ,2
a )

''k = - 6.2m' A
D = diameter of blood cell =h P

Ve 76.9Prn3

z = tissue thickness = 4cm

The values for O-s and Oa are those supplied by Ishimaru (19:66) while

blood cell dimensions (D,h) are taken from Johnson and Guy (21). The

wavelength NX is consistent with Ishimaru's data on scattering and

absorption cross sections.

Substitution of these numerical values into equation (11) gives the

following result for the signal to noise ratio:

=0

-2.21 x IO- 0 (17)

Equation (17) indicates that the coherent intensity has been completely

turned into incoherent intensity by the scattering process. It might

now be instructive to inquire at what point (in terms of optical

thickness) one might expect to obtain a coherent image. This question

may be answered by setting the ratio =--) equal to unity and then

solving for the optical thickness T.

* o v Using equation (15) one obtains
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r(P & 7-TWo ep(7 O
Cmm

which implies that

K eXp(TWO)JjW (18)

42

The quantity CYDis proportional to (D/\ 2 and Kr k. Therefore, the

left side of equation (18) is proportional to (a/D)2 -- a quantity which

is likely to be quite large in the case of transillumination. It may be

concluded, then, that equation (18) is true only for large

(i.e., either strong scattering and/or large thickness of medium).

Letting ( _I and 7L= X , the following mathematical steps

establish an equation for optical thickness wherein one may expect to

obtain a reasonably good image in a scattering medium. First, following

the definitions of B and x given above, equation (18) implies that

B = exp('x/x

Therefore,
I In? + r(I B')- 1nB Iv(X-1.nx)

: n[B(K-ln x)]

= ln[?,x- Bl~x]

If x >> Inx, then

n B± 2"i W (I B 3 : le" x  x (19)

where and " -TW0 2
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Now if the diameter D of a scatterer is large compared tox, then 01-

2.66 (D/% 2 (19:122). Substituting plq= 2.66 (D/) 2 into the equation for B

yields

5 (Kra) -3.71(&/D)2  (20)

Letting a = 2cm and D = Pm (as in the example calculation for S/N) one

obtains

B= 3.o3x .07

Substituting this value of B into equation (19) one gets that

lL (3.03 x10 7)+ 1l(l 5.01 107)= TW0  (21)

For a medium that is not highly absorbing (as is the case with breast

tissues other than blood) W0 I andTW0 ? . Therefore, from equation

(21),'T= 20.08 and

p (J+c)FZ P07% =20.08 (22)

Then using the fact that/C- and the same parameter values

used before one obtains for z (thickness)

Z - 1.019 mm

This value for z, then, represents the upper limit on the thickness of

tissue for which one would expect to be able to obtain a reasonable

coherent image, i.e., an image which would still contain details of the

object profile.

" Interpretation of the Signal to Noise Ratio.

Z The calculation of S/N shows that, for the parameters chosen, the
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coherent signal PcP') is (for all intents and purposes) non-existent.

The exponential factor (10-334 ) may seem surprising since in many

cases of noisy systems, although the signal to noise ratio may be quite

low, equation (17) indicates an extremely weak signal, indeed (if it

may be said to be there at all). However, if one considers the fact

that the noise is not additive but derives from the scattering of the

coherent signal itself, it is easier to see how the coherent intensity

should be so overcome by the incoherent intensity that it "feeds". If

the scattering cross section 0s is at all significant, it does not take
s

long as the wave propagation through the medium for the coherent

portion of the intensity to be removed almost completely.

0Given the analysis presented in this chapter, it does not appear

that the optical processing techniques aimed at retrieving or enhancing

the coherent intensity in order to improve imaging and are likely to

Gsucceed. Such methods as matched filtering or simple averaging of

outputs to eliminate or reduce noise assume that the signal is present

in the noise and is, therefore, retrievable, at least in principle. In

the case of breast transillumination, however, the coherent or average

signal is no longer present in the total wave. Therefore, a matched

filter has virtually nothing to match. On the other hand, although

averaging outputs (at, say, different angles) could theoretically reduce

noise, the result would not be an enhanced coherent signal (since, in

actuality, there virtually is none). Of course, the parameters chosen

here for the calculation of the signal to noise ratio do not necessarily

correspond exactly to those of breast tissue. The values of the

parameters were chosen largely as they were simply because the

scattering and absorption cross sections, density and other physical

parameters for the breast were unavailable. Nevertheless, it is
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reasonable to assume that breast tissue would not exhibit properties so

different from those considered in this chapter that the conclusion

implied by equation (17) would be changed in substance. The reader will

also find that the calculation of the total intensity to be accomplished

in Chapter III will show that the parameters used here yield results

fairly close to those obtained under actual transillumination.

Further, one should consider that the assumption of a primarily

forward scatt,7in pattern for single scatterers constituted a "best

possible" scattering medium for the retrieval of the coherent intensity.

If, by chance, the single scatterers in the breast had scattered

radiation patterns broader that that indicated by a Gaussian

approximation to the phase function, the signal to noise ratio

calculated under that circumstance could only be worse than that arrived

at in the analysis presented. That is, the broader the scattering

pattern of each scatterer, the more quickly would the coherent intensity

be spread out through the medium and the more quickly would the coherent

image bearing intensity disappear.

The development of scattering theory presented in this chapter has

led to the conclusion that the coherent intensity is effectively

destroyed by the intense scattering process in a biological medium of

the kind considered here.

At this juncture, it is important to formulate the problem of

transillumination imaging in the light of the theoretical results

obtained. In particular, it is, of course, experimentally established

that images of tumors are observed under transillumination despite the

fact that the scattering theory presented here demonstrates an effective

zero value of coherent image bearing intensity. A conclusion that may

be drawn from this observation is that the imaging occuring in
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transillumination is not obtained by means of the coherently propagating

intensity. Instead, the shadow image cast by a tumor must be the result

of differences in incoherent intensities. Therefore, to improve

transillumination imaging in the near infrared, one should first

concentrate on improving contrast in intensity over the image plane

rather than attempting to resolve the details of the object of interest

(a tumor) imbedded in the tissue.

In Appendix H, the reader will find, as an example of an attempt

to recover the coherent signal, a description of the method of phase

retrieval as it might be applied to breast transillumination. The

results obtained in Appendix H show that the phase of the signal

cannot be recovered by this method. Consequently, phase retrieval does

not show promise of improving imaging by transillumination.
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III. A Method for Improving Imaging in Transillumination

In this chapter a method for improving the contrast in

transillumination will be presented. This technique, called Time

Gating and Spatial Filtering (TGSF), concentrates on improving contrast

by physically reducing the effects of scattering. The method does not

attempt to retrieve a coherent signal but accentuates, instead, the

contrast in incoherent intensity across the output plane.

Time Gating and Spatial Filtering of the Transmitted Radiation

Recent studies (24) based on a Monte Carlo model of propagation of

light through thick (20 mm - 80 mm) heterogeneous biological samples

have provided encouraging results suggesting that spatial and time

discrimination of output radiation can, in some instances, significantly

t improve the contrast in transillumination. The work accomplished thus

far has not been directed specifically toward the problem of cancer

detection in the breast but the method used is certainly applicable to

the problem.

Simulation of Laser Tomoscopy

This section is devoted to a description of the Monte Carlo

simulation of photon propagation through a tissular medium performed by

Maarek, et al. in 1986 (24). In this study, the researchers simulated

the illumination of a tissular slab with a picosecond laser source.

* Inside the tissue there was considered to be a blood vessel which could

be moved about to simulate the process of scanning the tissue with the

source. At the output end of the slab was a simulated, collimated,

ultrafast optical Kerr Shutter. Thus, at the shutter, both spatial and

temporal discrimination of photons could be performed based on
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scattering angle at the shutter and flight times of photons.

The advantage of using such an apparatus can be understood in terms

of the source of noise in the imaging. As theory indicates (Chapter II)

and experiment demonstrates, light scattering produces a reduction in

contrast and resolution of an image. In terms of photon paths, the

noise at the detector comes from photons which are first scattered far

from the axis of illumination and are then eventually scattered back

into the field of view of the detector. These photons cause light areas

to appear where, imaging in the absence of scattering, there might

otherwise be dark regions (24:207). Thus, a reduction in contrast and

resolution occurs in the image. Now those photons which are scattered

far from the axis of illumination and yet reach the detector travel

distances greater (and have longer flight times) than those photons

which tend to stay nearer the illumination axis. Consequently, a time

gate at the output slab could remove noise from the total system by

"discarding" those photons which take some time longer than a pre-set

acceptance time to cross the tissular slab. The time gate would ensure

that only those photons which tend to travel near the illumination axis

would be detected.

Description of the Simulated Model

The tissular model which Maarek, et al. used is pictured in Figure

13. The tissue was a semi-infinite slab bounded by parallel planes at

x = 0 and x xmax. The tissue surrounding the blood vessel of radius

R was assumed to be a homogeneous medium with optical characteristics

equivalent to that of dilute blood with a hematocrit of 0.05 (indicating

a ratio of total blood cell volume to blood cells and plasma of 0.05).

The blood vessel of variable radius R centered at coordinate xc, Yc

as shown in Figure 13 contained blood with a hematocrit of 0.50. This
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Figure 13 . Schematic representation of the heterogeneous tissue
model constituted by a tissular slab (1) (thickness x mx) containing a
blood vessel, (2) (radius R coordinates of the center Xcqyc)
(24:408). 
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model has some similarity to the model of the human breast described in

. Chapter I. It will be seen later in the description of the results of

the simulation that the output intensity is, in terms of important

qualitative features, very similar to that seen in transillumination of

the breast. In both the surrounding medium and the blood vessel the

oxygen saturation was assumed to be 100 percent and the refractive index

1.36 (4). In most cases the number of input photons was 30,000.

Optical Parameters Used in the Model

The optical parameters such as scattering and absorption

coefficients S and K were calculated according to Zdrojkowski and

Pisharoty (41). Path lengths between scattering events were based on

work done by De Palma and Gasper (10).

Maarek, et al. reported that use of only an optical collimator is

insufficient to select only those photons which travel near the axis of

illumination:

It should be noted that for thin samples the probability of a
photon's free path being greater than the sample thickness is fairly
high and so photons can pass through without a single scattering
event. It is for these situations that the use of an optical
collimator can produce good image resolution using transillumination
because a large number of detected photons will have travelled
straight along the illumination axis (24:408).

The computation of scattering angles was the same for both the

surrounding dilute blood medium and for the interior of the blood vessel

and was based on experiments done by Maarek et al. on a dilute blood

sample (24:408).

Transmittance and Reflectance Characteristics

To provide a baseline and normalization factor for the simulation of

imaging, computations were carried out assuming a tissue sample not

containing a light absorbing blood vessel. In addition, no detection

aperture was included at the output end of the sample. Figure 14
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*. Figure 14. Variations of the number of transmitted photons (N) for
three values of the medium thickness(Xmax ); curves 1, 2, and 3
correspond to x values of 40m, 60,fi, and 80rm, respectively
(24:409). On g'nh (a) the number of diffusely transmitted photons is
plotted as a function of emergence ordinate y (in rm). On graph (b) the
same parameter is plotted as a function of emergence time t (in ps) and
curves 1, 2, and 3 have been shifted to the same time origin considering
that time zero corresponds to the straightforward crossing times of the
media. The number of photons, N, detected with time gates of 5 ps and
10 ps have been plotted as a function of emergence ordinate y on graph
(c) and (d), respectively (24:409).
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depicts the results obtained for tissue thicknesses of 40mm, 60mm, and

80imm. Each of the graphs a, b, c, and d include results obtained with no

time gate, a time gate of 5 ps, and a time gate of 10 ps. Figure 15

represents values of transmittance and reflectance obtained with varying

thicknesses. Also included in Figure 15 are values of transmittance

when a Im detection aperture only was used and when a 10 ps time gate

only was employed.

Maarek, et al. stated that

Above sample thickness of about 50rrm the reflectance Re is
approximately constant because the surface of the model has the
greatest influence on the intensity of the reflected photons.
Consequently, they contain no information about the deeper regions
within the model (24:409).

* Curve b in Figure 14 shows the flight times of photons assuming time

zero corresponds to the straightforward crossing time. The curve shows

that as thickness of tissue increases, an increasing number of photons

have flight times greater than the straightforward crossing time ts.

In particular, for a 40mm thick sample, somewhat less than 100 photons

of approximately 12,000 detected have a flight time close to ts . In the

band, for a sample 60ram thick or more virtually all photons detected

have flight times greater than ts .

Curve a in Figure 14 indicates that for a change from 40rmi to 80rm

thicknesses the transmittance is reduced from 21.4 percent to 3.18

percent when there is no time gate. A change in thickness from 40mrm to

80amm with a time gate of 10 ps causes a decrease in transmittance from

5.8 to 0.08 percent. Under the same change in sample thickness, a

reduction from 2.3 to 0.01 percent occurs with a time gate of 5 ps.

The input power required to obtain the transmittance indicated in

Figure 14 can be calculated from a knowledge of the number of photons

1; emerging from the sample and the total number -,f photons originally put
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Figure 15. Variations of diffuse transmittance TD, collimated

transmittance Tei through a lmm aperture, transmittance T

corresponding to a time gate of 10 ps and reflectance Re as a function

of medium thickness (xmax). The data are computed considering

homogeneous tissular slabs (24:409).

TD x 10 x Tcl= diffuse transmittance through aperture dia. = lmm.

T10 , transmittance with time gate of 10 ps.

10 x Re = reflectance
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into the medium. Considering graph a in Figure 14 and a tissue thickness

of 40rrm, the total number of photons received is the area under the

graph. This is

N R ~~-umbCr of pkaton.s veceiveA

_ (12.) NAy

where N = 400 is the number of photons received on axis and Ay Z60mm

is the width of the curve at its base. Since the transmittance for this

curve was 21.4 percent the number of input photons required is given

approximately by

=(j'/z)(-1jo) (Gomr')

o.Z14

This approximation is reasonable considering that blood cells have an

absorption cross section of approximately 0.06 m2 at X= .632 .m which

is much smaller that the scattering cross section Os (O_s = 6Qm 2 at

the same wavelength). Thus, the probability of scattering is much

greater than the probability of absorption.

From these considerations, one obtains for the input power P:

1c) He)~
.5 X -O-- 3

Att

• 55mW
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Since Maarek, et al. assumed He-Ne laserX was set equal to .632 n. The

Monte Carlo study also assumed an instantaneous pulse which was

approximated in the above calculation by a time of 5 ps.

Simulation of Imaging by Transillumination

The following is a summary of the results which Maarek, et al.

obtained for two tissue thicknesses and varying location of a blood

vessel of radius R.

The first case assLmes a 40rm thick sample with a 2mm radius blood

vessel. Figure 16 depicts the transmittance graphed against yc which is

the y coordinate of the center of the blood vessel. The movement of y

simulated scanning of the sample with the source. All transmittances

are normalized by the total transmittance obtained with no blood vessel

present. The symbol TD represents the transmittance without regard to

either the time or position at which photons emerged from the sample.

The symbol Tn indicates the transmittance received with a time gate of n

picoseconds and T represents a transmittance with a time gate of nn,m

picoseconds and a detecting aperture diameter of m millimeters. The

detecting aperture allowed for spatial resolution. In all cases the

aperture or "window" was centered on the illumination axis.

From Figure 16 one can see that transmittance decreases as the blood

vessel is moved closer to the axis of illumination. Based on a formula

for the contrast (C) given as

• C ~= 1.- ________________t~nc

:Lim c tr amit&lce-

the contrast for TD was

C 10- : O.Z
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Figure 16. Variations of normalized transmittance values as a

function of ordinate of the vessel center yc when a small vessel

(R = 2mm) is displaced in the core of a thin tissular slab (Xmax = 40mm)

(24:311). Curves are plotted for values of transmittance TD, T5, T10 ,
and T5,2.4 (see text for explanation of symbols).

Legend for graph:

0 TD Xmax = 40ram

0 T5  Xc = 20rm

T10 R--2mm

S 5,2. 4  .Time Gate = 5ps Aperture
Diameter = 2.4mm

Xc - 20mm indicates blood vessel was at constant depth in the middle of
the sample.
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With a time gate of 5 picoseconds (without filtering with an aperture),

the contrast was

c5 = 0-37 = O.G31.00

Similarly, for a time gate of 10 picoseconds (no aperture),

C1o = 1- 052 .4
1..00

The curve in Figure 16 denoted by a diamond symbol ( represents

transmittance values obtained with a time gate of 5 picoseconds and an

* aperture window of 2.4 mm. In this case the contrast increased to

5,2.4- 1- 0.77

The second case of simulated transillumination assumed a tissue

thickness of 80mm and a blood vessel of radius R = 4mm. Figure 17

depicts the transmittance values obtained wheh the blood vessel was

moved laterally across the middle of the tissular slab. Contrast values

obtained were TD: CD = 0.20, T10 : C10 = 0.65, T15 : C15 = 0.50,

* T20 : C20 = 0.45.

Figure 18 represents the transmittances when the blood vessel was at

a distance away from the source of 60m (20rm from the unilluminated end

of the tissular slab). The contrast values obtained in this instance

were TD: CD = 0.11, T10 : 0 0.40, T15:C 15 = 0.37, T20:C 20 = 0.29.

In addition to the cases detailed above, Maarek, et al. also

simulated the transillumination of an 80mm thick slab with a 2mm radius

blood vessel located at the center of the slab. The researchers

-57-



transmittance

00

0 o 5

Yc m"

P.i Figure 17. Variations of normalized transmittance values as a
function of ordinate of the vessel center yc when a medium-sized vessel

(R = 4mm) is displaced in the core (Xc = 40mm) of a thick tissular slab
(Xmax = 80mm) (24:411).

Legend for graph:

TD Xma =80

X T10  Xc = 40rn

- T1 5  R = 4mm

*• T20

Xc= 40mm indicates blood vessel was at a constant depth in the middle

of the sample.
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Figure 18. Same caption as for Figure 17 (24:412). The medium-sized
blood vessel has been shifted towards the unilluminated side of the
tissular slab (Xc = 6Ormn). Contrast is degraded from the case where
X 40rrun.
C Legend for graph:

* TD X mx= 80ri

X T10  Xc = 6rrin

T R =4mm

T T20
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reported that, in this case, there was only a very slight decrease in

transmittance as the vessel was moved laterally with respect to the

source. The contrast obtained without time gating or spatial filtering

with an detecting aperture was only 0.08. It was reported that time

discrimination could not be used because of "uncertainties in the

computed results."(24:412).

Discussion of Results Obtained by Simulated Transillumination

The contrast values obtained by Maarek, et al. incorporate the same

general features one sees in transillumination of a breast containing a

tumor attended by a proliferation of blood vessels. Notably, Figures 16

through 18 indicate a transmittance gradient across the y ordinate which

to the eye would present a shallow region encompassed by a light area.

Maarek, et al. have succeeded in showing that, for the optical

parameters used and the model chosen, the technique of time gating

coupled with spatial filtering by a detection aperture may be able to

increase the contrast obtained under actual conditions of

transillumination. The best improvement in contrast obtained with time

gating and spatial filtering was 57% over that obtained without time and

spatial discrimination (see Figure 14).

Maarek, et al. caveat their study with the remark that "...Because

4,. of the present lack of experimental data on the optical parameters of

biological samples other than blood, we have used a model with the

assumption that only intratissular blood cells interact with photons,

which could have resulted in overoptimistic results." (24:412).

It will be shown below that, though the Monte Carlo study gives

somewhat higher transmittance values than those obtained experimentally

. .. in diaphanography, the difference is certainly not so great as to throw

fundamental suspicion on the Monte Carlo results. It will also be shown
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that the results obtained theoretically in Chapter II show a close

agreement with the Monte Carlo results described in this section when

the same optical parameters and thicknesses of tissue are used.

As an analytical tool, the Monte Carlo simulation technique has

several advantages and some disadvantages when compared to the

theoretical approach presented in Chapter II. The simulation allows one

to keep track of paths traversed through the scattering medium thus

leading to the possibility of time domain analysis of the scattering

process. This feature led to the time discrimination technique which

resulted in the noted improvements in contrast. The Monte Carlo method

also gives one the capability of determining the probability density of

path times and lengths from an output such as that pictured on graph b

in Figure 14. Thus, one again gets greater insight into the effect of

the scattering process on path lengths. The theoretical analysis

It (Chapter II), however, provides for a more general conceptual

understanding of the relationships between multiple scattering and

transport processes (eg. the Fourier transform relation between the

correlation function and the specific intensity). The mathematical

approach also allows for a quicker calculation of the effect of changes

in optical parameters, wavelength, and thicknesses of media.

Comparison of Transmittances Obtained by Monte Carlo Simulation
and Theoretical Calculation

To provide some comparison between the results obtained by the Monte

Carlo simulation of Maarek, et al. and the theoretical approach in

Chapter II, the calculated value of the angular spectrum of the specific

intensity I(7,a will be obtained for the same optical parameters and

tissue thicknesses considered in the Monte Carlo method.

The calculations of the angular spectrum I(z$) are based on the

formula

101 1101kilf -6P.-



IY~p& O) + To KT)exp -(X (23)

which is valid for large optical thicknessT7-(20:300). To obtain the

total intensity received in 2lrsteradian in the forward direction,

ITT,O) must be integrated over values of from zero tolT'/2. Knowing

that

c = sin 0 cosOdO

and neglecting the small quantity 0exp(-n 6(t?) one gets from equation

(23):

A & 7/2

I(TG) = I OoC/q T)fo e xP[V-So i/T]%sincosO~c (24)

The albedo W0 has been set equal to unity as the particles (blood cells)

are virtually non-absorbing at X = .632 T.

From equation (24),

0

27oW L (25)
-IO

The quantitya = 2.66(D/X) 2 for large particles where D is the diameter

of a particle and X is the wavelength of radiation. The scattering
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blood cells have a diameter of approximately /p and Tis calculated

from the formula:

H-- (I.- H)O (z

n s Ve

where H is the hematocrit, Ve is the volume of a single scatterer

(blood cell) and . is the tissue thickness. The volume of a blood cell

is

Ve= iT (D/2) 2 t
= (7/z g mun (27 Lrn)

0 = 7(.97pm3

Awhere t is the thickness of a blood cell which is approximately P.

(19:63). The scattering cross section 0s is obtained by linear

extrapolation from data published by Ishimaru (19:66) on the scattering

cross section of blood cells. For X= .632 .n, s = 60".V2

]s

Substituting these parameters into equation (25) gives

- oiS I/'

Then, since intensity is measured per steradian, one obtains for a flux

P in 27Tsteradians:

for o. I oC~I 0

for a transmittance value of 19.6 percent. his value is in fairly
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close agreement with the transmittance obtained in the Monte Carlo

simulation of 21.4 percent. Accomplishing the same steps for a tissue

thickness of 60mm one obtains a transmittance of 13.5 percent according

to scattering theory. The Monte Carlo method obtained a transmittance

of approximately 10 percent if it is assumed that the number of input

photons was 30,000. For an 80mm thick sample the calculated

transmittance is 10.3 percent while the reported Monte Carlo value was

only 3.8 percent. In the case of the 80rm thick sample, the number of

input photons must have been approximately

NI 1 /2)(-8)(GO)photors r ceved

0.0-3

- 30,ooo ho+OS

It is difficult to assess the exact nature of the relationship

between the theory developed in Chapter II and the Monte Carlo method.

Nevertheless, it is clear that the two approaches agree fairly well as

long as tissue thicknesses do not become too large.

The reader should note that conclusions based on the comparison

given here between the theoretical and Monte Carlo approaches should not

be carried too far. The comparison does, however, support the notion of

a general agreement in results of the two methods. In particular, the

Gaussian approximation to the phase function for forward scattering

seems to be essentially valid based on the analysis given above. Again,

it must be noted, however, that for very thick biological samples the

results of the methods diverge.

.To conclude this section, a comparison of the transmittances

obtained in the Monte Carlo tissue model with those obtained under
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actual breast transillumination would be useful. Table II presents

optical densities (38:V-9) obtained under actual transillumination.

The values D and Dr are the optical densities obtained using

narrow band filters with transmission peaks at 540 and 650 nm,

respectively.

The mean value (X) of Dr of 0.83 given for 25 women with normal

breast tissue gives a transmittance value T = 10-0 .83 = 14.8 percent.

It is possible to compare this value with transmittances obtained via

Monte Carlo simulation and scattering theory despite the fact that the

Monte Carlo tissue model had only a 0.05 value for the fraction of

volume taken up by scatterers (and is therefore, not a dense medium) and

yet breast tissue is relatively dense. Recall that the equation for

scattering strength

is symmetric about its maximum value of w = 1/2 (w = volume of

scatterers as a fraction of total sample volume).

The equation forp na shows that the values of w = 0.05 and

w = 0.95 gives the same values of scattering strength. Thus, a comparison

between transmittances obtained by Monte Carlo simulation and actual

transillumination of breast tissues is not unfounded. In particular,

the approximate agreement of transmittances obtained by simulation,

theory, and actual transillumination lend further support to the

contention that scattering in the breast is primarily forward directed

and is due to particles somewhat larger than red or near infrared

i .wavelengths.
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TABLE II

OPTICAL DENSITIES

Optical density values. D and Dr, obtained from diaphanograms

of 110 women with breast cancer and 1 women with benign breast
disorders. The miscellaneous group consisted of two women who had lymph
nodes and one woman who had a lipoma. X = mean value and
SD = standard deviation.

Histologic Visual interpretation No. of Optical density*
classification of diaphanograms patients

Dg Dr

SD X SD

Cancer Dark-shaded area 42 2.87 0.42 2.03 0.86
Light-shaded area 52 2.25 0.49 1.12 0.56
No shaded area 16 2.16 0.58 1.19 0.75

Fibroadenoma No shaded area 37 2.01 0.58 0.84 0.53
Mastitis Light-/dark-shaded area 7 2.38 0.43 0.93 0.46
Miscellaneous No shaded area 3 1.69 0.40 0.56 0.07
Mammary duct
ectasia/Fibro- No shaded area 82 2.08 0.47 0.68 0.24
cystic disease

Normal breast No shaded area 25 2.02 0.59 0.83 0.50
tissue

*Expressed !n density units

ffX
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Implementing Monte Carlo Simulation Using the Gaussian Approximation

to the Phase Function.

It would be useful to implement a Monte Carlo simulation of the

scattering process in a way which ties Monte Carlo results closely to

the scattering theory presented in Chapter II. The motivation for doing

so comes from the consideration that the improvement in contrast

experienced by time gating and spatial filtering (TGSF) of the

transillumination output could then be translated mathematically into a

reduced optical thickness T R . This reduced optical thickness of a

tissue medium with the same transmission characteristics of a medium of

thickness where the scattering cross section 0s is reduced in
5

magnitude. In other words, TGSF effectively produces a "new" medium

with reduced optical thickness 7-R. It is suggested that, using this

reduced optical thickness, one could again apply the scattering theory

I ; of Chapter II to determine the feasibility of mathematical image

processing on the new T R medium.

As a first step in this direction, the following is presented to

show how a Monte Carlo simulation can be created incorporating the

Gaussian approximation to the phase function p(s) which describes the

distribution of scattered radiation.

In capsule form the steps involved to implement the simulation are

(1) Introduce a photon into the medium at position (x,y,z = 0),

(2) Calculate the path length 1 to the location where the next

scattering or absorption event takes place,

(3) Determine if the photon is absorbed or scattered after

traversing path length 1,

.. (4) If the photon is absorbed, stop and input a new photon,

(5) If the photon is scattered, calculate the direction (6c which
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the photon takes, and

(6) Compute the position (x, y, z) of the photon to track its

progress through the medium.

The probability density functions needed to calculate 1, , and at

each scattering event are

IIt ) e× - L 11 0

i/z- O SO-l

-- where 1 = I/n~s is the mean free path length (n is the total numnber of

i scatterers). Note that the integration to arrive at i: () was over

limits from 0 to Owhich is a valid approximation since the contributions

to the integral for large are negligible. For pel) and r9(O

i exponential and Gaussian random variables would have to be generated

~from a random variable uniformly distributed over the interval from 0

i: to 1 as generated by a computer. The values of 1 may be calculated from

the equation
• 1 i2.. [iu- (26)

[ where u is a uniform random variable distributed over the interval
0 u 1. The values of can be calculated from an approximation

listed by Abramowitz and Stegun (1:932).

To tie the results of the Monte Carlo method outlined above to
f om scattering theory as developed in Chapter II the output flux as

predicted by the angular spectrmu of the specific intensity could be

II -68-Ithe equation
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fitted mathematically to the output flux of the obtained by Monte Carlo

simulation with TGSF. If all the same optical parameters are used in

the simulation and in the scattering theory, the difference in the

fluxes predicted by simulation and theory becomes a function of optical

thickness T.

To accomplish this mathematical fit, however, the output fluxes of

the Monte Carlo simulation with and without TGSF must be normalized

relative to each other to insure that a reduction in *T(T-> T R) is

actually obtained. To see this, consider typical transmission curves in

Figure 19 for the same medium with and without TGSF. If one does not

normalize the outputs in graphs (a) and (b) in Figure 19 it can be seen

that a medium corresponding to graph (b) without TGSF would be one with

a larger optical thickness than in graph (a) because of the reduction

in total transmission. However, one would expect that if effective

scattering is reduced (artificially by TGSF) then graph (b) would

represent a medium with reduced 7.

Therefore, the areas under graphs (a) and (b) in Figure 19 should be

normalized relative to one another to produce equivalent transmission

values as shown in Figure 20. The areas under the graph (c) and (d) in

Figure 20 are equal and, consequently, represent outputs with equal total

transmission. It can be seen that with transmission normalization,

graph (d) must correspond to a mediumu with reduced optical thicknessT
R

because the spread of intensity in graph (d) is decreased with respect

to that in graph (c). If one fixes particle densityPn and physical

thickness Z, then the reduction in the spread of intensity reflected in

graph (d) corresponds to a reduced scattering cross sectior produced

by removing scattered photon noise by TGSF. Consequently, the actual
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Figure 19. Typical transmissision curves obtained via Monte Carlo
simulation. Graph (a) shows the transmission obtained without time

~gating or spatial filtering at the output (note the large spread in

photon intensity _yl). Graph (b) shows transmission obtained with time

: - gating and spatial filtering (note total transmission is reduced as well
. as the spread of intensity!Ay2).
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Figure 20. Normalized transmission curves obtained by Monte Carlo
simulation. Areas under the graphs are equal (identical total
transmission values). Graph (c) shows transmission obtained without
time gating or spatial filtering. Graph (d) shows transmission obtained
with time gating and spatial filtering.
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optical thickness T
a

'a )zJ '} (27)

becomes the reduced optical thickness TR:

(07r

ZI 5* C-L Z(28)

where ' (Os. It remains to show how the value of C' may be
s S

obtained from the equation for the angular spectrum of specific

intensity I('/', :

I(0)= I~ZT)qcjqJ(q sin)exp{~P oX ( z J29)

a

which is obtained by Fourier transformation of the correlation function.

Let the total transmission (or flux) obtained without TGSF be denoted by

i ~ TV then

Ii N~(30)
".

whcre N(I) is the nunber of photons received in the output plane as a

function of 61 = tan -1(yl/z). The integration is carried out over the

angle , (the angular extent of the intensity in the output plane). The

6. subscript 1 in equation (30) identifies quantities corresponding to

an experimental arrangement without TGSF. The symbol yl is the

coordinate axis in the output plane perpendicular to the illunination

• axis.

' Similarly, let T2 be the total transmission in the output plane with
'

TGSF, then

T2 0 '~ a 2- (31)
2z
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where the subscript 2 identifies a quantity obtained with TGSF. If F N

is the normalization factor, then

T1 =  (32)

where T1 is a quantity determined by simulation. The total transmission

(flux) T2 has been integrated over 0 2 leaving a quantity which is now a

function of 7-R alone. From equation (29) one obtains

00
T-"z(k)- a qJo(q s.)x-[-Woex? (,I)

., where T is
R

+ c ~-7~ (34)

Since :n'-- U, and Z have been set the same values for cases with and

without TGSF, T is a function of 0-' (a scattering cross section
R s

reduced by TGSF). Therefore, equation (33) for the specific intensity

states that I(7-R ) = 1(0s').

Finally, since T= 2 I1, and T2 =2 12, Gs ' may be determined by

solving the equation

T" z(Us') - (35)"
"" (35)

for U' where
5

'"0 Co

•I(q a o(q-S 9)eY'f  z -(36)
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and 9a has been set equal to zero for a (relatively) non-absorbing

medium. Equation (36) can be solved numerically.

Once 0-', the reduced scattering cross section is obtained, one is

then presented with (or, so it may turn out) a new imaging problem to

which the equations for the limit of resolution may be applied. Of

course, the hope would be that the reduced optical thickness 7R is low

enough that either a reasonable image may be obtained, or that

mathematical imaging processing could be reapplied with reasonable

expectations of success.

IWO

-74-4 74



IV. Conclusions and Recommendations

N ll Imaging tumors of the breast by transillumination proves to be a

challenging problem - and this for principally two reasons:

.. (1) Noise generated by the scattering process is not additive, and

(2) Breast tissue has an extremely high optical thickness.

Point (1) above sets fundamental limitations on methodology.

Because the coherent or average signal is physically converted into

noise by scattering, matched filtering or averaging techniques are not

likely to succeed in improving image quality. A highly scattering

medium very quickly destroys the average signal bearing wave and,

* consequently, after a short propagation distance, there is little or no

signal left to match. Also, techniques based on averaging various

outputs suffer from the lack of a coherent field so that although a sum

of outputs (perhaps at different illumination angles) could in principal

reduce noise, the result of averaging would not be an enhancement of the

coherent image since any coherency is virtually gone.

Point (2) addresses the high degree of scattering which light

undergoes as it propagates in breast tissue. The optical thickness

determines the severity of the scattering and, therefore, the minimum

physical thickness through which one might obtain a reasonable coherent

image . For the aperture and focal length of lens chosen, the value of

for which a coherent image could be expected to be obtained was 20.08

while for the biological medium used in the Monte Carlo simulation was

nearly 750. It is believed that the Tfor the human breast would

likewise be very large.

Thus, one is led to conclude that because of the lack of a coherent

-V "signal in optically thick tissues, the image obtained by
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transillumination can be improved only if some physical process to

i , mitigate the scattering is first applied. A technique designed to do

this is time gating and spatial filtering (TGSF). Using TGSF it was

found, that under some circumstances, an improvement in contrast of

77 percent is theoretically possible.

Since the Monte Carlo simulation done by Maarek et al. used a dilute

blood sample as the scattering medium, it can be expected that some

differences would exist between the results obtained by the Maarek et.

al. Monte Carlo simulation and a Monte Carlo simulation of breast

transillumination. Thus, a Monte Carlo simulation designed specifically

for breast transillumination could prove to be of value.

* Such a study could be used in principal to test the applicability

various models and model parameters. Also, following the implications

of the last section of Chapter III, it might be found that a particular

*' time gate and spatial filter could produce a reduced optical thickness

7R for which mathematical image processing is a feasibility. Of course,

before any such scheme can be entertained as a possibility, it is

essential that experimental data be obtained for important optical

parameters of breast tissue such as scattering and absorption cross

sections, and particle densities, concentrations and dimensions. It is

recommended that if further research is conducted on improving imaging

in breast transillumination, that it be done in three phases. The first

phase should concentrate on gathering data as described above. The

second phase of the research should conduct Monte Carlo simulations to

determine the reduced optical thickness T R which can be theoreticall,

achieved by TGSF. The third and final phase should be devoted to

determining the feasibility of and quantitative efficacy of mathematical

image processing using the medium with an optical thicknessT reduced

R
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by TGSF.

- Finally, the reader will recall that one result of the discussion of

the scattering model in Chapter I was that improvement in

transillumination imaging could occur by simply detecting photons a

1.21P. There is a transmission peak at this wavelength in human

collagen of the dermis. Since the fibrous material in the breast is

also collagenous, it is reasonable to suggest that experimentation on

breast transillumination at 1.24.P would show increased transmission

through structures surrounding cancers while yet retaining the feature

of high absorption in the water-bearing plasma of vessels massed about

cancers. An increase in contrast, then, should be detectable in the

-* image plane. It is recommended, therefore, that transillunination with

detection at 1.2 gn be attempted.
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Appendix A: Multiple Scattering Theory

The following development of Twersky's theory is based on Ishimaru's

formulation. Consider a random distribution of N particles located

at point vectors r1 , r2 ,..., rN in a volume V. At this point, no

specific assumptions are made concerning the size or shape of the

individual particles. Also consider a scalar field/ at ra (ra being

a point in space between scatterers). The field a satisfies the wave

equation

(V2 + k 1 - (37)

where k = 2 7\is the wave number describing the propagation

0- characteristic of the medium surrounding the particles (20:254).

If~oia is an incident wave ("i" meaning incident and "a" indicating

A location ra) in the absence of any particles, the field/a is then the

sum ofia and the contributions U a from all N particles located at
5

some point rs, s = 1, 2,...,N.

1P = Oi + U (38)
-9 31

The symbol U a indicates the field contributions at a point r
s a

(upper index of U) from scatterers located at various points rs (lower

index of U) (20:254).

The sum over Usa Usa) is, then, the wave at ra due to all scatterers

in the volume V. This wave may be expressed in terms of a wave

incident upon a scatterer located at r and a scattering characteristic

usa of the scatterer located at rs as observed at a location (between

scatterers ra. In mathematical form U a isa s

UJ = V9 (39)
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a. a s
where u is taken to be an operator so that the symbol u s does not

indicate a product (in general) (20:254).

". The "effective field" field incident upon a scatterer located at a

point rs is (20:255) N
e P +ZUs (40)

The case s = t is excluded from the sum in equation (40) since a

scatterer does not contribute to the wave incident upon it. Figures 21

and 22 depict the quantities thus far described.

~ 2
5

--- -- -- -- -- -- -- > Us  (at ra)

N

Figure 21. The wave Ua as the sum of the contributions from an

incident wave(' i and scattered waves from particles 1, 2,..., s,..., N
(20:255).

S a su

ra

Figure 22. The wave usa at r due to the scattering of wave(p3 by

a single particle S (20:255).

Combining equations (38), (39), and (40) results in the following

expression for the field/a:

a= + a S + N41
. teS

Equation (41) may be iterated over Sand thereby include the effects
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of an ever increasing number of scatterers. If such an iteration is

* "" carried out, becomes (20:256)
N NWN

+)I1 W .f.. 'U j t 1 t 'n (42)

The first term in equation (42) is the incident wave at r a. The

second term is the contribution toVa from all single scatterings from

all the scatterers s = 1, 2,..., N. The third term represents the

scattering contribution to/ a from all double scatterings. The terms in

* equation (42), then represent the scattering contributions from all the

single, double, triple and multiple scatterings that occur in the random

medium. See Figure 23 for a depiction of various multiples of
0

scattering.
p..(r." ra

r rt

V (a) single scattering (b)double scattering

.r a.s

a

pi r

r m  rr

(c) triple scattering (d) triple scattering with

* propagation through particle at
rt more than once.

~Figure 23. Multiple scattering (20:257).

Note that the term corresponding to s = m is nct excluded from
- equation (42). The case of s -- m represents paths that go through a

given scatterer more than once. To mathematically illustrate the
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concept of multiple scattering through one particle the fourth term in

equation (42) may be written as- N N . N A N
&s St (43)

I R ~ t t 5 t #4s

The second term on the right side of equation (43) has conflated to a

double sum since the sum is over s and t and m = s (20:256).

Twersky's theory does not include scattering through a single

particle more than once. As Ishimaru states,". . .Twersky's theory

should give excellent results when the backscattering is insignificant

compared to scattering in other directions" (20:257). Even so, in other

cases where backscattering is present to a more pronounced degree, the

difference between the Twersky scattering process and an exact process

(including multiple paths through a single particle) becomes small as

the number N of particles grows large (20:258).

TABLE III

EXACr THEORY AND TwERSKY'S ThEoRY

Shown in the table are the number of terms included in the exact
scattering process and the Twersky process. As N (the number of
particles) grows large, the difference between the exact process and
the Twersky process becomes very small.

E = Exact T = Twersky Difference
' E-T

E

1 0

Single Scattering N N 0

Double Scattering N(N - 1) N(N - 1) 0

Triple Scattering N(N - 1)2 N(N - 1)(N -2) 1
N -I

Quadruple Scattering N(N - 1)3  N(N - 1)(N - 2)(N - 3) 3N - 2
(N -i)

(20:258)
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For convenience, the mathematical form of the Twersky process is

written here explicity.

N Nt N N N

s~~~1~ S- t=,S tMi

I, ' I ret (44)

Integral Formulation

The developmnent so far presented is useful for a conceptual

understanding of the multiple scattering process but does not lend

itself to use as a tool for determining quantities in practical

problems (20:259).

To make the theory practical, Twersky derived an integral

formulation of his theory. Consider a random medium consisting of

particles all of which have the same statistical characteristics

described by a weighting function w(s). The variable s designates all

of the characteristics of a scatterer s such as location (rs), shape,

orientation, and dielectric constant" (20:259). Since all the

scatterers have the same statistical characteristics, w(s) may be

written as

(45)

where Cs represents all the characteristics of the particles with the
exception of location (20:259).

If we now have some random function f which depends on all the

scatterers we can express f as (20:259)

0 (0 ) (ZJ VV(~) W i1Tr'' (46)
',,) iff...ff- -
, =f - - (46

where <f()> represents the average of f corresponding to scatterer

Al . characteristics other than location. One can then write
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u.rder o.f sciLtterers withill

W(It vit m
tot -&I 1ML~yAnbeY of a,.&tt'CcVS
in V

- ______) __ (47)

where/(r) is the number of scatterers per unit volume (20:260).

The average of f is (20:260)

f- N N N

.( r) , P ' "" p(¢) d,.. (48)

In the development above, it is assumed that the scatterers are (to

'within a good approximation) statistically independent of one another.

For a biological medium, investigators assume this to be the case for

wavelengths in the visible and near infrared. This assumption may be

supported by a consideration of the far field of a particle. For a

collagen fiber (diameter- D--lOOnm) the far field is D2/X= 0.0gm for

a value of X= Ign. To put this in perspective, a distance of 0.0Pm is

700 times smaller than the average diameter of a red blood cell. Thus,

the fibers do not have to be a significant distance from each other for

the far field approximation to be accurate. In this case it may be

concluded that statistical independence is a good approximation. Later,

it will be shown both qualitatively and quantitatively that when the

density of scatterers becomes large (and the distance between

scatterers is small), the character of the scattering process changes

significantly (scattering, in fact, decreases).

Given the expression for <f> in equation (48), an equation for the
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various scattering terms in Twersky's equation may be written. First,
- from the equation for

N N NN

=1 tz I VA: I t

consider the second term. This term has the integral form (see equation

48)

Na N

°S

(49P)

a.1 :L a -iE

~The third term in equation (44) becomes (20:260)

t- NIt (49)

Since there is one less term in the sum over t as compared to the sum
over s, equation (50) results in

s -8 --

Nai t-t(50

oveseuto (5)rslsi

N
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For large N (which is the case in breast transillurnination) equation

(51) becomes

In general, the terms in equation (44) generate multipliers of the

integrals of the form

N 4-1)(N-Z 7--- (N- .1-2))
N - (52)

where n indicates the nth term in equation (44). Since the highest

degree terms in the numerator and the denominator of equation (44) are
-. Nnli
0

g N.oo

Therefore, the inte6 ral expression for a/> is
a a. ra- s " U a

NIJt TV..'r

+ _ " (54)

Recalling that <$> +fL Pi (rt'kione can write equation (54)

as

* K~i~ rj+ ~%K1J r. (55)

Iteration of equation (55) results in equation (54).

Equation (55) represents the fundamental equation for the coherent

(average) field in Twersky's multiple scattering theory and is the major

result of this section.
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Apedi :The CreainFunction

* Twersky's integral equation for the correlation of the field in a

random medium at points r a and r b is consistent with equation (55)

developedi in last section (20:263). The correlation function a >as

derived by Twersky is (35:99)

+ ab. (1)
> <Va -P' v 1

%I where

va will be referred to as the multiple scattering operator.
s

If equation (1) is iterated in accordance with equation (2) the

following expansion results:

- b- v 5 vS*

-NJ.-

.1'The first term of equation (56) is tht- prx~-

at ra ard the corrylex conjugate of th, Lch,

N ~The second term represents t:,c wavt it r,.

field at r t' a jugh the rW-"

generatod by the corrlt., -. r

~/ .'-~ the mect-.i~isri of-
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avs -

a 
s

Figure 24. The v a scattering processes giving rise to the field at
ra (20:264). s

Based on the development thus far, the relation between the

scattering operators uv a becomes clear. In heurisitic terms,

the scattering operator usa represents the radiation from rs to ra

through free space, whereas v a represents the radiation from r5 to ra

through multiple scattering (20:270). In order for the theory to become

IWO useful the mathematical form of vSa (the multiple scattering operator)

must be obtained. Consequently, the next stage of the mathematical

formulation of the scattering problem will be devoted to a determination

of v a based upon (1) a reasonable approximation to the form of us
a

(the free space scattering operator and (2) the relation between us a and
s5

vs a given by equation (2) (20:264).

-87-

S4



(a)

S2 
(b)

'p. ~ , *$e rb

(c)

(~. rb

Figure 25. Scattering process for equation (22) (20:264)
(a) represents scattering for the first term, (b) for the second, and
(c) the scattering for the third term.

The reader will recall that the far field approximation was assumed

for the scattered field. Envoking this same approximation the wave

a s a s> may be written as (20:266)

A

where f(o,i) is the amplitude scattering coefficient for a single

scatterer. f(o,A) represents the amplitude of the A component a field

V1> incident upon a scattarer from the direction i and scattered into the

direction l (the symbol Ao is chosen to indicate a direction of

observation). Given the expression in equation (57) and the relation

between usa and vsa [equation (2)] it is possible to calculate the form

-88-



Ia
of v a. First, from equation (57) write u a as (20:266)

-.S f 0~) ex p(i K Ira F., (58)

and by extension, for the radiation from another scatterer at rt to

location ra one gets

rt (59)

Figure 26 illustrates the physics of the problem. The solution to

the problem of finding vsa consists of solving the following equation

r. t

V 5 -A 5  
1~~~5't'(2)

rt .

1at
A
its r

0> ra

rs

Figure 26. The scattering process for determining the operator vsa

(22:269). The problem consists of integrating over all contributions to
vs  from scatterers located at all positions rt.

To proceed, it is first assumed thatp(rt) in equation (57) is

constant. This assumption can be seen to be valid if one considers that

over a given macroscopic region in the tissue medium surrounding a

cancer the density is relatively isotropic (primarily fibrons with

little fat).

The operator vst in equation (2) may be written as
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V5 ts(60)

where t s is some unknown function expressing the results of multiple

scattering. Then, substituting equation (60) into equation (2) the

following equation results (20:269)

d 00 Oo

sat tJS 5 at (61)

0 -00 -00

The integral in equation (61) may be evaluated by the method of

stationary phase (20:287-291) to yield (20:269)
no 00

xexp[i1 (r-v1)]

a-z t
ttS

z Z~ri t$ (62)

gets5 
t

A. A 4

a1-S) I(8 ) t

wheres be: t - ,se2 h a - andt s t eale d t te suc

thati ar se Z t -pon. The cotr tlio n s from t he egios t th r e

neglected (20:269).

Substituting equations (58), (59), and (62) into equation (61) one

gets 7 O N

(63)

It must be the case that tas and ts have the same functional torm such

that 4as 4s'ts z s The following will show that the form for
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tts which satisfies the condition just mentioned as well as equation

S(63) is

=a -I (,z -Zs) (64)

Substituting equation (64) into equation (63) one gets

Z czripf r(aA()a a

k( i X exP [ Zf8- )zts
+ 0 exIp[e))k (6-se L K ( .1" J

Ea

X exp[ K(6PF -
Jdz

W-1

t1 7 ,( 6 5 )

It is now possible to calculate vsa by noting, first, that by

extension from equation (60)

"S S (66)

Then, substituting equations (58) and (65) into equation (66) one

obtains
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ep[ K +

(67)

Def ining Ks k+ equation (67) becomes

~ f() ex~iKI~sI)(68)

At this point the formulation presented in this section has arrived

at (1) an expression for the correlation function (equation (1)), and

(2) an expression for the multiple scattering operator v sa (equation

(68)).
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Appendix C: The Transport Theory

The transport theory is described by a basic differential equation

which is equivalent to the Maxwell-Boltzmann collision equation used in

the kinetic theory of gases. The usefulness of the theory is not

limited to photon transport but has been applied to many physical

phenomena ranging from underwater visibility and neutron transport, to

the propagation of radiant energy in the atmospheres of planets, stars,

and galaxies (19:148).

The fundamental quantity in the transport theory is the specific

intensity I(r, ) (also called the radiance). I(rS) is measured in

Wm-2 sr 1Hz-1 and is the average power flux density within a unit

A
frequency band centered at frequency P and radiating in the direction s

from a point r. See Figure 27.

-0 
I(r,s)

Figure 27. Flux through da on a surface A (19:150).

The amount of power dP flowing within a solid angle c4.through an

elementary area da (with vector s0) in a frequency interval

V- to V + dV is (19:149)

d ).c-d'4 s(69)
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It is also convenient to define the average intensity U(r) in terms

of the specific intensity:

U(fi =4 47)I( S)4
"47r

where the integration is taken over all 47rof solid angle (19:152).

If the specific intensity is independent of ', the radiation is

isotropic. On the other hand, if I(r,') depends on 9, the specific

intensity scattered bypds particles in a volume ds can be expressed in

terms of the amplitude scattering coefficient by (19:156)

I , "sca'ttI fd S's d (70)

See Figure 28.

L -ds-b

0 r......... > [I(r,s)]

df

-U

- Figure 28. Scattering of specific intensity incident from direction
s into direction ' (19:156).

where fCss) indicates the amplitude of radiation incident in direction

S and scattered into direction s.
A

It is convenient to define the phase function p(ss s) according to

the following equation:

f , r(5 ' (71)
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This phase function provides a quantitative description of the

directional scattering characteristic of a single scatterer (from s'

into s). It represents the amount of scattered power in a particular

direction and has no relation to the phase ol the wave (the terminology

"phase function" has its origin in astronomy). The albedo of a particle

S--- (where U = 67 + 07 ) is dependent on the phase function

t

(19:11):

W ~~ d (()A(~)Wo: ('//,r , S l (72)

Using the terminology and symbology just presented the differential

equation for the specific intensity takes the form

- S(pUIS(- g d (73)
ds t 4r

in the absence of sources inside the scattering medium (19:157). In

general a source term E(r,s) would have to be added to the right side of

equation (73).

Consider the terms in equation (73). The first term on the right

side of the equation is due simply to the losses in a volume ds from

scattered and absorbed power and has the form of the Lambert-Beer law.

The second term represents the added contributions to the specific

intensity from all scatterers in the volume ds.

- It is possible to write equation (73) in terms of a nondimensional

"optical thickness" defined by

7 ds (74)
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whereupon equation (39) becomes (19:157)

The optical thickness will be used extensively in sections to follow

and in the calculation of the limit of resolution of an imaging system

in the presence of a scattering medium.

The integral form of equation (73) will be used in the following

section to derive the relationship between the analytic and transport

theories. Therefore, the integral equation based on the specific

intensity is presented here. Its derivation is provided by Ishimaru

* (19:161-162). After integration over the total volume V of the medium,

the following equation is obtained (19:162):

7(7

~r Ys[-i~iI (76)

where

U~i'~) avrageiiffe ity ~t,4r) a. , )dw~Fa i v r g e i t e -M 
(77)

and

r A4
£[i€5 aerage red aetisity =(i/z) -147 (78))d

,-&-ra 
r
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where Iri is the reduced intensity which is the result of power losses

"Y ,-.' from the incident intensity I (rOs) ( = point of incidence on the

medium) due to absorption and scattering in accordance with the

Lambert-Beer law of propagation. This reduced intensity propagates

along a straight line connecting r0 and ra, the point of interest.

Figure 29 illustrates the quantities involved in equation (76).

0

Sra

Figure 29. Physical quantities appearing in equation (76) (19:162).

The first term in equation (76) is the average intensity which results

from the intensity reduced in strength and by losses due to scattering

and absorption. The second term represents additive contributions to

the average intensity at ra due to radiation scattered to that point

from all scatterers in the volume V. Note that these contributions due

to scattering are each diminished by spherical expansion (indicated by

,e (1 ) I - i--A1 factor) and by attenuation (indicated by the

exp[a- rs] factor) (19:162).

O.
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Appendix D: The Connection Between the Analytic and Transport Theories

From the correlation function of analytic theory the intensity may

be written as

a6 +VIV IZ ± 7

a a + (80)

where Y has been set equal to a to calculate the intensity at ra.

Again, the form of vsa is given by

where k = k [ zfff(AS)/k1and i is a unit vector in the direction of

the incident wave. The term Ivsa2ils,12> in equation (79) represents

the contribution to the intensity from all incident directions i.

To demonstrate that the correlation function and the specific

intensity constitute a Fourier transform pair, it will be assumed that

the Fourier relation exists and that the equation for the average

intensity (equation (76)) follows from this assumption. Consequently,

the correlation function takes the form (20:275)

_* = -, d-= (3)

where je = iIZ(r.+ rb') and rd -- '&-r b  ,and Kr is the real part of K

given in equation (68).

The intensity at a point r can now be written as
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'4.'F ~ i ~ ~ f T ~ \(81 )

Following equation (81) and operating on with 1va 2 the

equation for the s'7attered wave from a particle may be derived. First,

theopeatr I s 12is calculated:

=S 5 .5 (82)

Using the relation 2 ImvK:: 1 -(K-K")r P't (Im denotes "imaginary part

of"e) equation (82) becomes

= If( 15(83)
.1

where o and ihave been replaced by s and ^S'. The equation 21TmK~ptis
a result of the forward scattering theorem (19:14). Having obtained

JvT the quantity (1  1 IVI s /12> may be evaluated to

give

SiSi. .p~s,) -I/ £C/Sr) (85)

A' ~ and the average intensity
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I

U (-r =(/47r f 04 8)dwC (86)

the integral in equation (79) may be written as

As for the first term in equation (79) it should be recognized that

the coherent intensity 1la12> attenuates in just the same manner as the

reduced intensity incident on the scattering medium. Thus, the

following equation is finally obtained

which is identical to the equation for average intensity arrived at by

the transport theory. Equation (87) was obtained by making the

N assumption expressed by equation (3) which relates to the correlation

function to the specific intensity. Thus, equation (87) establishes

the result that the correlation function and the specific intensity

are related by a Fourier transform.
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Appendix E: Plane Wave Illumination of a Plane-Parallel Medium
NNi

A critical question to ask is to what extent, if any, it is possible

to use image processing techniques to obtain or improve an image of a

breast cancer. As an approach to this question, the problem of plane

wave illumination of a medium bounded by parallel planes oriented

perpendicular to the direction of incident radiation will be considered.

The first step towards a solution to the problem of plane wave

incidence is to calculate the specific intensity using the transport

theory under what will be referred to as the small angle approximation.

In this approximation, a single scatterer is considered comparable to or

0- larger than the wavelength of illuminating radiation and so scatters

incident radiation in primarily the forward direction. This

approximation is in accordance, then, with the model presented in

Chapter 1.
V

Once the specific intensity has been calculated, the result of the

last section will be envoked in order to obtain the correlation function

and finally, the limit of image resolution.

Using the relation

- S. g (r, ) (88)

the equation of transfer (transport equation) may be written as

0 .c

.g, ( ) _po..i-.S (89)

in the absence of a source inside the medium (19:235).

cA A
In Cartesian coordinates r xx +y zw xy, z are unit
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vectors in the x,y, and z directions, respectively. The direction s

(the direction of scattered light) in terms of direction cosines (l,m,n)

is given by (19:234)

= + A A
4n 7(90)

where
I I.Ti j Co 0 V(91)

n = sin @Si P

(92)

and
a n z Coso (93)

Also, the differential element dldm which is set equal to ds where

+ -my has the form

d I1c m = COS~si-n dd = ndw (94)

Under the small angle approximation, the angle should always be

small and, therefore, n = cos 1. Further, although the limits of

integration on I and m should be 12 + m2  1, the contribution to the

specific intensity from regions where 12 + m2  1 is small and,

therefore, the limits of integration on 1 and m can be extended to too

(95)

It is also assumed that the phase function p(s',') is a function of

A At

s-s.

Using the above approximations the transport equation becomes

[ Off-10V )I2 -1 )d s! (96)
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where"@ r- x y , CD + CU JAI +
r XxOX ay XS]im

The quantitypn designates the number density of scatterers.

At z = 0 (the boundary of the medium) the specific intensity is

I(ojP I) =-1 (/), 1) (97)

The general solution to equation (96) was obtained by Ishimaru using

Fourier transform method. The detailed solution to this problem is

presented in Appendix J. The final solution for the specific intensity

is given by (19:238)

Ik, ,s) p -). 1-Kz)K(98)

where

. p~~q:q K (-' '(99)

where q Kr (P-P2.) Kr d

The vector K is a spatial frequency and the Fourier transform of the

specific intensity with respect to p = xk + y^ is

K(100)

wherel"[' indicates the Fourier transform operation. The inverse

Fourier transform of I1 (Z,K,s) is

. I( ,zg) = .) (,K )exp(iK-p) a K  (101)
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In addition, the Fourier transforms of the phase function p(s) and the

% flux density are given by

00

=ff?eXP (ig4')JS (102)

and

,(103)

-00

(for the definition of I2(zl,s see Appendix J).

Consider now the case of plane wave incidence on a tissue medium

bounded by parallel planes located at z = 0 and z = d. At the boundary

z = 0 the incident specific intensity can be written as

0 o 0 , ) = Io6L(3-) (104)

A&and the flux at z = 0 is (see Appendix J).

Fo(KCj) = (zlr)2 l0(K) (105)

To approximate forward scattering a Gaussian form for the phase

function may be assumed whereupon the phase function p(s) becomes

where apis proportional to (DX)2 and D is the particle diameter and

is the wavelength of illuminating radiation.

r@. If equation (105) and the Fourier transform of equation (106) are

substituted into equations (98) and (99) respectively, one gets for

(z,,q) and I(z, ,s) the following solutions:

-'",,,..~ ~ x". qujiq. = - Wo,--x C! A'AAo
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and

t(%~5a. %Iot e2L*~a 1~t (108)

The steps that lead to equations (107) and (108) may be found in

Appendices J and K. Appendix J presents the general solution of

equation (96) leading to equation (108). Appendix K describes the steps

required to calculate the Fourier transform of the phase function to

arrive at equation (107).

015



Appendix F: The Correlation Function in the Small Angle Approximation:
Plane Wave Solution

The general solution for the specific intensity is:

I (~ ~) [i/zirlf~K~e% '(-i~1 + i(98)

where

K(a, K-) e {-fzc"i- (110)

For plane wave incidence, the specific intensity at t =0 is

*A I0  1 (112)

and, therefore the flux density at z =0 becomes

F0(K;) (2z7 z I06(K) (113)

To approximate forward scattering, the phase function is written in

Gaussian form:

_XpW(_ 01-a52) (4)

where is proportional to (D/X)2 and W .=O-sA~. By equation (111)
5~0

P(q) becomes

57.
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The Fourier transform calculation to derive equation (111) from

equation (4) may be found in Appendix K.

Substituting equations (112), (113), and (111) into equation (98) one

gets

fj, ,Sf' f° - l(K)'( (114)

- f .6(K)eXp(i.)K(' ,)q) e 4  4 (115)

Evaluating equation (115) forp = 0 yields

I (z, i sq (116)

Since the correlation function and the specific intensity are Fourier

transform pairs and equation (116) is an inverse Fourier transform, it

follows that

n - I~,

00

(117)

However, by equation (106),

-107-
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Therefore, by equation (117) the correlation function becomes

q'(41 -1efx p -vvWa x ap/K~)] (6)

where

Z (I/tZQW(Zp~))(119)



Appendix G: Image Resolution Limit in a Random Medium

Consider a monochromatic plane wave normally incident upon a medium

consisting of randomly distributed scatterers with absorption cross

section O-a and scattering cross section O's and optical thickness

T= Pn(s + G )-d where d is the physical thickness of the medium.

(x'y')

aa- _mage0

-. f

0 Figure 30. A monochromatic plane wave lp propagating through a
random distribution of scatterers (20:301).1 The resultant scattered
wave is focused onto the x,y plane (Fourier transform plane). The lens
has radius a and focal length f.

The resultant scattered wave is focused by a lens of radius a and

focal length f onto the x,y plane as shown in Figure 30. Since, in the

* absence of scattering, the lens would produce the Airy pattern in the

x,y plane (representing the diffraction limit), the actual intensity

distribution that results from scattering can be compared with the

iffraction limited case to get a sense of attainable resolution for an

arbitrary object.

In the x',y' plane (the plane where the lens is located) the field

*,.-f is4/(z,P') ' x + y'A). The field at the focal plane (x,y) can be

written in general terms using the Kirchoff formula (20:302):
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=k fexp(i kvr~ )4(jl))c (120)

where the integration is taken of the area S of the lens and r is the

distance between the point on the aperture (lens) and the point on the

focal plane (2:302).

Using the Fresnel approximations

ikre ~ (/expik[f~ -Zf

and

- (x'Z Y'z)

and substituting these approximations into equation (116) one obtains

P) =(k/Z7rfi)exV(ikf + -t (121)

where = x + yy and /, = x x +

To get the intensity in the focal plane the quantity4*

fp)12 must be calculated. This is done in the following manner:

xt ((*- )eq (i fF -

s (122)

MU Carrying out the indicated multiplication results in
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I~Ii~~Zfir ~(123)

If, following Ishimaru (2:302), the identifications/d' = P 1  -P2 ,

c ' = 1/2 1 ' + j2'), and I'dcO'c = ACi2 are made, equation (123)

may be written as

jq () 12 xv A(124)

VNote that the equation A f f is not, strictly speaking,

mathematically true. However, under the integration indicated, the end

result is the same whether one uses q6,'d19' or dia'dP ' since all

points in the aperture are included in either case.

Using the result obtained in the last section for the correlation

function, namely that

-1 f <4 7- - K 7

- W~~p(-(125)

where 7=/notz, it can be seen that equation (124) takes the form

sk 20. /'/_Ie-'x.?Q A (126)

The quantity Pf(P) is called the point spread function, and in the case

of plane wave illumination, is the intensity in the focal plane as the

result of imaging a point source at a large distance from the scattering
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medium. An evaluation of the point spread function provides information

as to how the scattering (random) medium "breaks up" the forward

propagating plane wave into a myriad of phase fronts propagating in

various and constantly changing directions as the wave strikes particle

after particle in the medium. It can be seen from equation (126) that

the correlation function F determines the behavior of the point spread

function and is, therefore, from a mathematical point of view, the

quantity representative of the scattering process.

To carry out the integration indicated in equation (126) it is

useful to define a function F(p) (20:302):

(127)

fo/
Given equation (122), PfQ)) becomes

(Vrzffe Tk z- C

-00

Using the relation Pd' =P 1 ' 2' and 1c'= 1/241 ' +P2'), the

integration of Fp 1 ')F(02') can be written as
, g

P P,(129)

-00

The quantityK (d,) is the area of the intersection of two circles of

radius a and whose centers are seperated by Pd'. The solution to

equation (129) can be obtained geometrically resulting in (20:303)

-112-

PO,



2& [C0 -(.a) -z 7)' <2&

0 )O Z.(130)
-O

V

Now equation (128) may be written as

4,

-,- 2 (131)

Note that

"= X(Xr- X2 -) " Y( .- J) (132)

Transforming equation (129) to polar coordinates by the relations

X I)CO5 P sin (p
x = p osiOy,= /)s SGp

×z p Cos 0  y2 : p2eosO

= (133)

and substituting equation (133) into equation (132) one obtains after

algebraic manipulation:

NO=-P CSO A (134)
4~~~~ a P~IoK-)

Then equation (131) becomes
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d( ( 1  vf/~rIdl~ 135)

Upon interchanging the order of integration one gets

e* /5E cos (P) I ~z

And using the identity

JO (a xE-ija cos(O4)A

Pf 9) can be written as

aiFi) 7f0 [PdJ0 fPdiii I"f/L1'4P 3

and, therefore,

0

wherelF(z,Pd,) is given in equation (125) and Kf)d') is given in equation

(130).
II

Equation (7) (the point spread function) gives the intensity in

the focal plane. Note that, in the case of no scattering,

A in =OPr'tz is zero andFl(z,Pd , ) (equation (125)) becomes equal

to I0* Therefore, in the absence of scattering, from equation (126) the

intensity in the focal plane is (20:302)

a . [2'7r J (:k
aI; "- T / (136)

0
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k f
Letting r' = one obtains dp' = -dr and equation (136) becomes

Wbak

- ) 2(z7r)2 (/I<) f ,J(r,)di'

Then using the relation
x

one obtains

Ea J; ___w

a- (137)

Equation (137) is the Airy pattern created by a lens of radius a and

focal length f.

Equation (7) is the major result of this section and will

constitute the basis for the following analysis of the limit of

resolution one can expect from an imaging system in the presence of a

scattering medium.

To arrive at a useful interpretation of equation (7), it is

convenient to consider thL case of large optical thickness (T>> 1)

corresponding to a situation in which there is strong scattering (large

s) and/or a large physical thickness. In this case, the correlation

function F takes the form

7)(i4) Te)[- WO + WO(/ Y (138)
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where the approximation

has been used.

To equation (138) may be added Ioexp(-T) since, if 7 is large, this

additional term can contribute only a small amount to the value forT'.

If these approximations are made, equation (125) becomes

F(C1' 10 CXp(-T) +10 e x/p {T) [iWo+w W, Z4.y (139)

With F expressed in this form, it becomes clear that the first term

(10exp(-T)) represents a coherent component of the correlation function

propagating through a medium in accordance with the Lambert-Beer law.

4 The second term, then, represents an incoherent component of Iindicating

the presence of scattering. By equation (139), then, it has become

possible to seperate Finto coherent and incoherent parts (20:304).

Given the form of Fin equation (139) and considering equation (137)

(the Airy pattern under no scattering) it can be seen that equation

(7) has a solution for large T which is the sum of coherent and

incoherent components.

Accordingly, replacing I0 with 10exp(-T) in equation (137) one gets

the coherently propagating portion of Pfp):

Pc) - coherent component of the intensity

- 0Cj -I.QIJ .jl.7 (9)

The incoherent part of the intensity is unchanged from its form in
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equation (7) (in accordance with the approximation indicated in

equation (139), and therefore

Pi)- incoherent component of the intensity

%2

2 fZjd4odJ0(1Pa)T.(. P)K (140)

where

l~c~d) IOC p-r 1,+W (141)
4aj?

and q' = KrPd. Using equations (9) and (140), the intensity in the

focal plane can be written as

f ocal written

At this point it is convenient to define the correlation distance- a

concept which will be employed later to recast equation (140) into a

form which lends itself to gaining a clearer understanding of

limitations on resolution.

The correlation distance P0 is the distance from the axis of

illumination at which the correlation function fall to e-1 of its value

at Pd = 0.

The incoherent portion of the correlation function (equation 139)

at Pd 0 is

e- Yo )( )} (142)

Taking e-I of i one obtains

: ," [, iexv (-i'J.-W)] e -  = oe E'r(i-w 5+ W o. )] (143)

-117-

-S,



where/Pd has been set equal to Po. After eliminating the factor

"lexp[-T(1 - Wo)] from both sides of equation (143) one arrives at the

results (20:304)

0 7f(R (144)

It may be assumed that, due to intense scattering (largeTr, the

correlation distance in the case of transillumination is much smaller

that the size of the aperture. Under these circumstances , K(Pd') in

equation (140) may be set equal to K(O) =ra2 and equation (140) may be

integrated from 0 toW. Consequently, (20:304)

f(145)

This equation may be solved using the integral formula

7-_ exp -a

to get

1(p) f 2z-/f) [cO/e oKflep( 1Z 2"7 p.r oK f

Then defining the quantity (20:304)

) f ZTW7(f/4'O 2 (Z 0) 2

one obtains

": = Io(ap) 2exP[-r(i-w )- /P) 2 ]  (10)I ,
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Using equations (9) and (10) it is possible to gain a clearer

understanding of the imaging process in the presence of scatterers.

Equation (9) indicates that the coherent portion of the intensity

propagates with the same pattern as in free space except for the

Lambert-Beer type of attenuation. According to equation (10), on the

other hand, the incoherent intensity spreads out in the focal plane.

Ic
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Appendix H: Phase Retrieval

The phase retrieval problem is, in general terms, concerned with the

question of how spectral information may be derived from a knowledge of

only spectral magnitude (or intensity) information. The importance of

phase in imaging is well attested. From a complete knowledge of the

Fourier transform (including both magnitude and phase) it is possible to

determine by inverse Fourier transformation the image of an object.

This fundamental capability is guaranteed by the uniqueness of the

relation that exists between a function f(x and its Fourier transform

) However, if it is the case that only the magnitude of the

IFourier transform is known, it is not possible, in general, to infer

uniquely the characteristics of an object f(x) as any number of objects

-can have the same Fourier magnitude. The distinguishing feature among

these objects in the spectral domain lies in the phase of the Fourier

transform.

In recent years some important advances have been made regarding the

problem of reconstructing an image from only the knowledge of the

Fourier magnitude. These methods employ phase retrieval algorithms when

theoretical foundation is based on the fact that the real and imaginary

parts of an analytic signal are Hilbert transform pairs (16).However, it

is not the purpose of this research to explore the theory of phase

retrieval as such. The interest here is to employ the scattering

theory of Chapter II to analyze the efficacy of phase retrieval as it

might be applied to the problem of image reconstruction in

transillumination.

j For the purposes of analysis, the phase retrieval problem to be

considered is characterized as the problem of reconstructing an image
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from a single intensity measurement in the Fourier transform

*. j(diffraction) plane and an estimate (based on theory) of the point

spread function of an imaging system in the presence of a scattering

medium. The particuclar phase retrieval algorithm that would be

exercised on this is assumed to be of the error-reduction type such as

the Gerchberg-Saxton algorithm. The error reduction method was chosen

for analysis because it has the property that the error in the

reconstruction can only decrease (or stay the same) at each iteration

(14:197). In symbolic form, this property of the error-reduction

algorithm may be written as

E2.. E2- 4 E (146)

• 2

where -F,k2 and EO,k
2 are the errors in the Fourier modulus and object

- at the kth iteration, respectively.

From the form of the equation (146), one can see that if the minimum

error in the Fourier modulus can be calculated, and if at the kth

iteration eu,kl2 is to the minimum error, then Ek+1 2=

Therefore, it would follow that EO,k 2 EFlk when EF, k  is the minimum

possible value of the Fourier modulus error. In this manner, then, one

arrives at the least amount of error that can be expected in the

-( reconstructed image.

I Calculation of the Minimum Error in Image Reconstruction by
Phase Retrieval as Applied to Transillumination.

The following calculation is based on the relationship that exists

*@ between the intensity and point spread function (as measured in the

diffraction plane) to the Fourier modulus of the object. This

relationship can be expressed as

. K-" (147)
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where i , and I f I represent the magnitude of the Fourier

v ~ transforms of the object intensity, image intensity, and point spread

function, respectively. The quantity IM(f) is called the modulation

transfer function (,TF). The frequency f is measured in cycles per unit

length.

The phase retrieval method consists of making an estimate of the

Fourier modulus of the object by taking an intensity measurement in the

diffraction (Fourier transform) plane and dividing this quantity by a

measurement (or estimate based on a theoretical model) of the MTF.

This estimate of the Fourier modulus of the object is then inserted

into the error-reduction algorithm where object domain and Fourier

* domain constraints are applied to arrive at a new estimate of the

object. The steps involved in the algorithms as described by Fienup

are

"(1) Fourier transform an estimate the object; (2) replace the

modulus of the resulting computed Fourier transform with the
measured Fourier modulus to form an estimate of the Fourier

,, transform; (3) inverse Fourier transform the estimate of the
,. Fourier transform; and (4) replace the modulus of the resulting

computed image with the measured modulus to form a new estimate
of the object." (14:194)

For further discussion of the steps of the algorithm and a description

of the function (object) and Fourier constraints on the problem the

reader is referred to Fienup (14:217).
-p.. -"

It can be seen that, in the case of transillumination, the measured

value of the Fourier modulus of the object would be corrupted by noise

generated by the scattering process. The noise in the Fourier modulus

*:: I(f) ultimately limits the efficacy of the phase retrieval method

-(14). Mathematically, this noise is expressed in the point spread

*function or its Fourier transform, the KIF. In practice, the MTF could

be obtained by taking a measurement on a reference point source through
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the scattering medium. Alternatively, the MF could be derived from a

%- calculated point spread function. (14:217).

Since the point spread function for a plane-parallel medium has already

been obtained in Chapter II, the MTF can now be calculated and

substituted into equation (147) to find the value of IF(f) Iwhich would

be used in phase retrieval as the measured Fourier modulus.

Calculation of the KIT.

The reader will recall from Chapter II that the point spread

function P9O) may be written as

P 0) = PO JP) *- (p) (148)

* where Pc )) is the coherent (average) intensity and PiD)is the

incoherent (fluctuating) intensity.

From equation (148) one obtains

IP( 'P M~E +Yj(f)

= Mr + &i (149)

Equation (149) is the Fourier transform of PP5) and M(f) is the optical

transfer function. The quantity Mc(f) represents what will be called the

coherent portion of the transform and Mi(f) the incoherent portion.1!

At the outset, the non-normalized incoherent M.'(f) and

non-normalized coherent M '(f) will be calculated. Following thesec

calculations, the normalization factor will be obtained to arrive at the

normalized MTF.

First, Mi(f) is the Fourier transform of the incoherent portion of
1

PP5): 0
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where

Pio~ I(/)'x[(-w)(/,YJ (151)

and 211f = (k/fo)IPd (f 0  focal length of lens in Figure 29).

Let Pd (ts'" +'iwp'( ),

then,

p (cosVcossOt ,inst~ifP) = co'-0)

and

Therefore, from equations (150) and (151):

W\ ~P( ) rIl I )piPpc&9)p dp dcP (12

PP CO(V- (152)Sq.

=f "rr 0 PP--oppx) 1£1p0p p
40

Now using the formula

fx£p[_ 2tZ ( J (b) J 0 dt e V Xb/aL)

-124-

knK * -



equation (153) becomes

(154)

Now to calculate Mc' &d) (the prime indicated denotes

non-normalized). First, recall that

Tx(-)(I )J (* oa./f 0 ) (155)

and let bs ka/fo, then

Io~>4 (-Ta~ ~(156)

Following steps similar to those that led to equation (152) one obtains

M~'(P8) =10 e F4.§ (b )exjik/fP~cosY~P ~ t

Interchanging orders of integration results in

M'C P = Toe)(- T) afZo(k/fo)Pa (1-1p) J. (bp) dp
Now using the formula

""Jo " X 2 +1)
22-

2

x kt-P--X-fi vi- +

[RC( -- X1> OjRe X >-1 o<,,ba]
(157)
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Setting a = b, /1=V=1, MPd) can be written as

(04 271I ex F (-r) a? J0[Y 0)A

272(2) 1k-)~-.

272c2 I7(1)72(2)

and, therefore,

M,[5pd) ?T ic, exp 30n ? ,[(k (158))

Finally, combining equations (154) and (158) and noting equation (149):

4 I a~ef [ T~-Wo)eK~(~P~i) (159)

Equation (159) is the desired result for the non-normalized MT. The

first term on the right side of equation (159) represents the coherent

(average) part of the KFIF and the second term represents the incoherent
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(fluctuating) part.

,~. ~To get the normalized MIT, it is necessary <~calculate the Fourier

transform of the point spread function at zero frequency:

?~95+?j() dP (160)

First,

Ia,

* ~ k~(pj XV C-7Tcj i-Wo)1 (i/2)P1  (161)

Equation (161) is the incoherent portion of the normalization factor.

04 Now set

-f 00

Using equation (157) and letting c = ka/f0 :

X J( 1z; - 11Z 2; 1)

- a, P(12) F(2-)I(2-)
- 4 ]7~f r 31,') (512z)
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Therefore, 00

S; = toe'x T~a~

and

Joq 0 5R t1 2 pi (163)

Now dividing Mc '00d) + Mi ' d) by the normalizing factor one gets for

the optical transfer function .i)

o3T 21)-

?(164)

5 and the F= M16d)4

From equation (147):

I 'J M UY " a (165)

S; Equation (165) may be rewritten as

(166)

* -. It is clear that II(Od)I/IM(Od) is the correct Fourier transform of

J. the object. Denoting by JFAOd) the exact modulus of Fourier transform
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of teojcequation(16beo s

1~ (P) (167)

Subtracting 1F('Qd)jI from both sides of equation (167) and squaring and

dividing the result by jF(*d)l yields

.1 ~ ~ I6CQ3I) - 10 IMPJa

*where the left side of the equation is the definition which the

error-reduction algorithm gives the error in the Fourier modulus

estimate. Therefore,

:L + LN'ji.) I -1(168)

*Now if one can find the minimum value of M .(P)d) M (P)d) ,then

*substituting that minimum value into equation (168) will yield the

minimum error that can be expected in the estimate of the Fourier

modulus.

*The ratio IM i(0d) / M d)I is

i~a (169)
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This equation has many relative minima. In fact, the absolute minimum of

equation (169) occurs atPd =00. AtPd =00, equation (169) implies that

the error in the estimate of the Fourier modulus is zero (by equation

(168)). However, there is a practical limmit on the magnitude of/Pd

since/Pd has a cutoff value of 2a (the diameter of the aperture).

Without further argumentation, therefore, it is difficult to assess the

implications of equation (169).

Consider, however, the following argument which will show that, for

very large T, the only way to obtain a mathematically defined estimate

of the Fourier modulus is to evaluate Pd at approximately its zero

value.

First, evaluate Mc Pd) + Mi qd):

JZ

a," -( 7-Wo
pw
"

For largeT(and any value of Pd), this expression becomes

'Trae X (TWO')ex- 4

+- 1
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.1/Z

"4 z}

, Mc 2+ )_ Tr) PeX

(171)

Recalling that

02. 2

equation (170) becomes . 2 2 TWO.

.

1/2 W, 7
~2(7T) /)P ex~P (172)

Now using the same values forT, W0 , k andy that were used in Chapter
*r p

II:

:- (715G~ z x 1.2 )

IA 2(7r pi exp [- P )(1] (173)

It can be seen that for any value of Pd (0 < Pd < 2a) other than zero,

equation (173) is virtually zero due to the exponential factor.

Consequently, by equations (170) and (171) the Fourier modulus estimate

becomes undefined. Therefore, to get a meaningful Fourier modulus
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estimate, Pd must be evaluated at virtually its zero value.

Substituting /d = 0 into equation (164) one gets

I M lA (o)o l = c(Twc) (174)

Now substituting equation (168) the result is

j' ex. rw.)-1j 2  (175)F 22

For large Tand WO  1, ET - 1, or in other words, the error in Fourier

modulus estimate is virtually 100 percent.

Equation (175) expresses the minimum error one can expect in the

estimate of the Fourier modulus. Therefore, by the unequality relation

( 2.

characteristic of the error-reduction algorithm,
2 2 1(176)

for large T. Consequently, it can be concluded that the error in the

reconstructed image is, for all intents and purposes, 100 percent and

that the phase of the object cannot be retrieved.
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Appendix I: The Scattering Cross Section

The scattering cross section 0- may be defined in terms of the

differential scattering cross section 7 where=d
* Jim iR S.)Sil

= (-/17)-P (, -) (177)

R is the distance from the scatterer to the point of observation, Si and

Ss are the magnitude of the incident and scattering power flux density

vectors, 0"t is the total scattering cross section (0s + a) and p(oi)

is the phase function.

The total observed scattered power at all angles is produced by a

particle with scattering cross section G:

:f a .

7r
whre--s h ( -€''T , . "a ' ' (178)

where dLis the differential solid angle.

The albedo W. of a particle is

= 4 7

.5, t0~ f~(6,3.2A
5 S 

(179)
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Appendix J: Solution to the Transport Equation Using the
Large Particle Approximation (19:236)

As shown in Chapter II, if the size of scatterers is much greater

than a wavelength, it is possible to simplify the equation of transfer

(transport equation) using the small angle approximation (see Chapter

I, page ). One then obtains

* - 'L f S)(80

-00

-- v

4 -ri O-rff

-00

++ y '%+ 3 AO
where r :xx y+ z P + Zz t  + 9

's" = i-X + m' (19:236). ix a

A general solution of equation (180) may be obtained by a Fourier

transform method. Denote by 1I1 the Fourier transform of I with respect

top (19:236):

-- e7P - (182)

~Now the Fourier transform of equation (180) may be obtained. First,

! note that

• '" '' - O~l ff'  I1(Zig + ) (183)
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which is the Fourier transform of the first term on the left side of

'- equation (180) (19:236).

To get the Fourier transform of the second term note that

STz fII e"4K'Pc1K}ZF

:+ .}

(184)

Now,

(K. I +K A). (Xxyy

2 KxX + KyY

-: and

and, therefore, r-
- - I I e-:t' K

S (2 () l.7T .
i r) j A j

.C .. ,

., -2 . . 1 a(185)
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But equation (184) expresses the Fourier transform relation:

P)S (186)

which yields, then, the Fourier transform of the second term on the left

side of equation (180).

The Fourier transform of the first term on the right side of

equation (B-i) is straightforward:

5{-P,~cYL "t,~ ~ .po I~g A (187)

The Fourier transform of the second term on the right side of

equation (180) is _O

-)S dSJP*- 5 S-ff
4ff7r -'f7{tP .JJLi

*1*. 00

- (188)

Collecting equations (183), (186), (187), and (188) one obtains

* - 00

It is convenient to simplify the first term of equation (189) by

letting (19:237)

1(190)
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then equation (189) becomes
00

r .fp~

i- i

-00 (191)
%' -0

Now using the relations 0.

T" '(()p Mexi (192)

K (193)

the Fourier transform of the convolution integral in equation (191) is

taken. First, let r = s - s' and dr = ds then,

.rr - . . *-+ - . -~

zJ~fff~ji-e(194)

-00 

I

c~ frer seifa- -

-00
Substituting equation (194) into equation (191) yields

** -(I-)ke(igl ---

(by equations (192) and (193)).

The Fourier transform of the first term in equation (191) is

straightforward:

a 15 "1 't

K" (196)
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Then, one obtains from equations (195) and (196):

v." i F(.&K4)- P4ft K)@,,)-
pK (197)

Equation (197) is exact and may be solved using the integration factor

eKt

a"

C1 T1 z+-p- Tz -lF 0(18

whereK
,.14*r

Therefore,

orr

ore1'~P ~r ai -'Fc 
(199)

where C is a constant of integration. Setting z = 0 the constant c may

be evaluated:

.then

C= F (0.Y)

From equation (199) one then obtains

exP[f Ba-3FOi,) F(,

or
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The final solution I(z. ,S) for the small angle approximation may now be

derived. First, 00
P. 2. K,~e C .p(-I*,

I(--is 2 f e

(27r)z
-00

K(201
-00J{eXT (- i' a (201)

CO

Since IZ (ZK25. (ZK. (27r) I-

equation (201) becomes 0

X qx -[ °)F(-Aj< (202)

Now using equation (200) and changing the variable q-"= -- Kz and then

removing the prime (q -> qKz):

:: A ex - ci_

xf ex (-g- )O( *)eXPC- f -P(4- e+)dVj

- I

(2r)' fKC Xef [iKP5.(4 -A)e-Af0 ~
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Then, simplifying terms I(z,,s) becomes 0o

-DO

x -,- i-i,'. , a-,' ,J o

Equation (203) is Ishimaru's solution for I(z,, ,s) (19:238).
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Appendix K: Calculation of the Fourier Transform of the
Gaussian Phase Function

The phase function describing the angular distribution of scattered

radiation can be written as

~($) 4& ~e ~(204)

To find the Fourier transf rA., 1'~ of p(5) the following formula is

used:

r !

00

(205)

Letting

q= cl(co 5A ~sin45n)
then, ~i & - o

c~~sinOsi [cP5Acsy+ rsi1#j

*in [cO5(Os - (10

(206)

Substituting into equation (205):

P(~O x) =f±eoe s:;Yp) exp Is fn 9 0 -5o (40- (d)]as

00 XCs9Si

5X AXA



Rearranging, and changing order of integration gives

-W 0 Z7rJ(sW~i)ex.-p(-ci sifl 0)

-±TW foJ csin)X (CpiI62e (208)

Since -sn 3 COSesb-1lOa

S ~q /jrJI )C- (C 5' -SA

ooJqqs 4lrxf-( (-~ e)5I
00

- ~ w ( c~ 0 qsJx { f / ] 5 .s (209)

Now use the formula (1)

at) eX~-t)~ x

to get

P(q) =7 1 rWo (20() e( q/~

(210)

which is the desired result.
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